CHALLENGES OF BACKPANEL PLATING
<P align=center>Challenges of Backpanel Plating</P>
<P>Introduction<BR><BR>Hopefully, this will be the first in a series of articles relating to challenges faced when plating backpanels, and other more technically advanced, multi-featured pwbs. For purposes of this discussion, we’re assuming a minimal backpanel thickness of .250” (6.35 mm); however, as being noted in later articles, plating a .350”-.400” (8.89-10 mm) board can present some<BR>additional challenges.<BR><BR>When medium technology pcb firms succeed in plating (to spec) pane ls in the .125” (3.17 mm)<BR>range with an 8:1 aspect ratio, they often assume that progressing from this level to backpanels will involve a series of logical steps, but with few obstacles. Unfortunately, this is NOT the case, and speaking from our experiences as designers/manufacturers of automated plating and pulse equipment, we have had the luxury of viewing these situations from a perspective as “total systems’ suppliers” where we have seen firsthand the large number of important variables that MUST to be considered when plating backpanels with DC, (even more so with pulse). Presumably, this and subsequent articles will provide the reader with a reasonable overview so that many of these matters will be at least considered in advance of moving ahead.<BR><BR>Backpanels Plating<BR><BR>Often, the first realization that “things are truly different when plating backpanels” comes when one attempts to physically lift one of these larger panels by hand, perhaps doing so in a manual, prototyping plating tank, as the size, weight, and even the particular circuit pattern likely is not conducive to be run concurrently with other panels on an existing automated line which is dedicated to more “average,” thinner boards. Additionally, the average board, rack, anode dimensional “windows” will typically be inadequate to accommodate these much larger panels. It is also likely, if processed on a manual tank, th</P>
相关资讯