科普:新能源电动车充电时电池鼓包是怎么回事?友德充警示安全隐患
新能源电动车充电时电池鼓包:危险的信号!
当你为爱车充电时,如果发现电池外壳出现异常隆起(鼓包),南网电动汽车充电桩建设,这绝非小事!这是锂离子电池内部发生严重故障的强烈危险信号,必须立即停止使用并寻求检修。鼓包背后,隐藏着几大“元凶”:
1.过充的致命伤害:这是常见的原因。当充电管理系统失效或使用劣质充电设备,导致电池电量已满却仍在持续充电(过充)。此时,电池内部的锂离子过度嵌入负极,引发有害的副反应:电解液剧烈分解产生大量气体,压力骤增撑起电池外壳。友德充等智能充电设备内置多重保护(如电压监控、满电自动断电),正是对抗过充的关键防线。
2.高温的“催化”作用:高温是电池的“天敌”。在酷暑环境下充电,或电池散热不良(如被杂物覆盖),内部化学反应会失控加速,同样导致电解液分解产气。友德充配备的温度传感器能实时监控电池温度,一旦异常立即降低功率或暂停充电,有效避免热失控。
3.衰老与:电池用久了性能自然下降(老化),或本身存在制造缺陷(如隔膜瑕疵、极片毛刺),都可能在充电时诱发微短路。这些微小的内部短路点会产生局部高热,不仅加速产气,还可能埋下热失控乃至起火的隐患!
友德充警示:安全无小事!
友德充等通过智能监控(电压、电流、温度)、自动断电保护、适配性匹配等技术,大幅降低了过充、过热风险。但预防鼓包还需用户配合:
*认准原厂/可靠第三方充电设备(如友德充),远离劣质充电器。
*避免高温暴晒下充电,保证通风散热。
*关注电池状态,发现鼓包、异常发热、续航骤降,立即停用送修!
电池鼓包是安全红线!选择智能安全的充电伙伴(如友德充),养成良好的充电习惯,才能守护每一次绿色出行的平安。
科普:充电桩的散热设计有哪些?友德充风扇与自然散热对比

充电桩的“冷静”之道:散热设计探秘与风扇vs自然散热
随着电动汽车的普及,充电桩作为基础设施,其性能和可靠性至关重要。充电过程中,电能转换(尤其是直流快充)会产生大量热量。的散热设计是保障充电桩安全运行、延长使用寿命、维持稳定充电功率的关键。
散热设计的要素
充电桩的散热主要围绕功率模块(如IGBT、SiCMOSFET)和内部线缆等发热源进行。常见散热设计思路包括:
1.导热材料:使用导热硅脂、导热垫片等填充发热器件与散热器之间的缝隙,减少热阻。
2.散热器(散热片):这是的被动散热部件。通常由铝或铜制成,具有的鳍片结构,增加与空气的接触面积,通过热传导和自然对流将热量散发到空气中。
3.风道设计:合理的内部风道布局,引导空气自然流动(自然散热)或强制气流(风扇散热)经过发热区域和散热片,带走热量。
4.强制风冷(风扇散热):在散热器附近安装风扇(如“友德充”风扇系统),主动加速空气流动,显著提升散热效率。
5.壳体设计:外壳通常采用金属材质(利于导热),并设计有通风孔或格栅,促进内外空气交换。
“友德充”风扇散热vs自然散热:对比分析
*自然散热:
*原理:完全依赖散热器自身的表面积和空气自然对流(热空气上升,冷空气补充)来散热。
*优点:
*零噪音:没有风扇,湖州南网电动汽车充电桩,安静。
*零能耗:无需额外电力驱动风扇。
*高可靠性/免维护:无运动部件,结构简单,不易故障,维护成本极低。
*防尘防水性好:更容易实现护等级(IP65等)。
*缺点:
*散热效率较低:依赖环境温度和空气流动性,散热能力有限。
*体积/重量较大:为了达到足够的散热面积,散热器通常需要做得更大更重。
*功率受限:难以满足高功率(尤其是120kW以上)快充桩的散热需求。
*环境依赖性强:高温、密闭环境或散热器积灰时,散热效果急剧下降。
*“友德充”风扇散热(主动风冷):
*原理:在散热器基础上增加风扇,南网电动汽车充电桩,强制吹风或抽风,大幅加速空气流过散热片的速度,带走更多热量。
*优点:
*散热:热交换能力远强于自然散热,能有效应对高功率充电产生的大量热量。
*体积/重量相对较小:在同等散热需求下,所需散热器体积可以更小,整机更紧凑。
*功率适应性广:是当前主流高功率直流快充桩(60kW,120kW,180kW,甚至更高)的必备散热方案。
*环境适应性稍强:在相同环境温度下,主动散热能力更强。
*缺点:
*有噪音:风扇运行会产生一定噪音。
*额外能耗:风扇本身需要消耗电能。
*可靠性/维护需求:风扇是运动部件,存在磨损、故障风险,需要定期维护(如除尘)甚至更换。
*防尘防水挑战:进风口和风扇本身需要做好防护,南网电动汽车充电桩工程,避免灰尘、水汽侵入影响性能和寿命。
总结
自然散热以其安静、免维护的优势,适用于功率较低(如7kW交流桩、部分早期或小功率直流桩)或对噪音要求极高的特定场景。而“友德充”代表的风扇散热(主动风冷)凭借其强大的散热能力,已成为现代中高功率直流快充桩的标准配置,是满足、大功率充电需求的关键保障。选择哪种方式取决于充电桩的功率定位、成本考量、使用环境以及对噪音和维护的要求。随着液冷等更散热技术的应用,充电桩的散热设计也在不断进化。

充电桩的温度要求
充电桩(尤其是直流快充桩)作为高功率电力转换设备,其内部电子元器件(如IGBT模块、电容、主控板等)对工作温度非常敏感。为了保证安全、效率和寿命,(GB/T18487.1)通常规定充电桩的标准运行温度范围是-30℃到+50℃。在这个范围内,充电桩应能正常工作,提供额定的充电功率。
*低温挑战:温度过低时,电解电容性能下降,内部润滑油可能凝固,导致机械部件(如风扇、继电器)卡滞,甚至电路板无法正常启动。电池管理系统(BMS)在低温下也可能限制充电功率。
*高温挑战:温度过高是更常见的风险。大电流充电产生大量热量,如果散热不良,元器件温度会急剧上升,轻则触发过温保护导致降功率或停止充电(影响用户体验),重则加速元器件老化、失效,甚至引发安全隐患(如电容鼓包、电路板烧毁)。
超越标准:友德充的环境适应性测试
为了确保充电桩能在更严苛、更广泛的地理和气候条件下稳定运行,的充电桩制造商如友德充会进行远超要求的环境适应性测试。这些测试旨在验证设备在恶劣条件下的可靠性和安全性。
友德充的环境测试通常覆盖更广的温度区间,例如:
1.极寒测试(-40℃甚至更低):
*模拟我国北方严寒地区(如黑龙江、内蒙古)冬季或高海拔严寒环境。
*测试项目:冷启动能力、低温下满功率运行稳定性、结构件(外壳、线缆)耐寒脆化性、内部加热系统(如有)有效性等。确保在冰天雪地中,充电桩依然能“”并可靠工作。
2.酷热测试(+55℃至+70℃甚至更高):
*模拟南方炎热夏季、沙漠地区或设备密集安装导致局部高温(如阳光直射的充电站)。
*测试项目:持续高温满负荷运行下的散热性能(考验风扇、散热片、液冷系统等)、元器件温升控制、高温老化加速试验、高温高湿(湿热)双重考验等。目标是防止设备在“烤箱”般的环境中过热宕机或损坏。
意义何在?
友德充进行如此严苛的测试,目的是:
*提升产品可靠性:确保在恶劣的天气下,充电服务不中断,减少故障率,降低运维成本。
*扩大适用范围:使充电桩能部署到严寒的东北、酷热的吐鲁番、高海拔的青藏高原等特殊区域,推动充电网络的无死角覆盖。
*保障安全底线:温度是设备故障的重要诱因,通过测试能提前暴露潜在风险,优化设计,高温起火、低温失效等安全隐患。
*增强用户信心:让电动车车主知道,即使在天气下,使用经过严格验证的充电桩,也能获得稳定、安全的充电体验。
总结:
为充电桩设定了-30℃到+50℃的安全运行基线。而像友德充这样的,通过覆盖-40℃到+70℃甚至更广范围的环境适应性测试,主动挑战“极限”,大幅提升了产品的环境适应能力、可靠性和安全性,为构建全地域、全气候可用的强大充电网络奠定了坚实的技术基础。这不仅是技术的突破,更是对用户承诺的践行。
南网电动汽车充电桩工程-湖州南网电动汽车充电桩-友德充靠谱由广州友电能源科技有限公司提供。南网电动汽车充电桩工程-湖州南网电动汽车充电桩-友德充靠谱是广州友电能源科技有限公司今年新升级推出的,以上图片仅供参考,请您拨打本页面或图片上的联系电话,索取联系人:薛小姐。
产品:友德充
供货总量:不限
产品价格:议定
包装规格:不限
物流说明:货运及物流
交货说明:按订单