影响NTC热敏电阻测量的因素热敏电阻有一个可变电阻一个小电流,因此须加热和它的热量消散在环境中。这个自加热效应的特征是热敏电阻的规格为扩散常数。热量是毫瓦的量级,因此对环境的影响是可以忽略的,在大多数情况下,但自加热效应显示为一个测量误差。耗散常数是功率来加热热敏电阻在空气中1摄氏度(1.8华氏度)以上的环境温度下所需的量。较高的耗散常数是指测量结果会更准确。热时间常数·热敏电阻有少量的质量,这是通常进行封装,用于机械保护。作为一个结果,将花费一定量的时间用于热敏电阻,以正确地测量温度时突然改变。热敏电阻器的热时间常数是时间,单位为秒,需要的热敏电阻来适应温度变化的63.2个百分点。例如,如果温度为50至60华氏度改变10度,时间常数是读取56.32度所需的热敏电阻的时间。准确性·此外,由于自加热和时间常数测量的不准确,热敏电阻本身具有一定的耐受性在它的测量。这个误差可以在电阻或温度,要么在一个特定的点或在测量范围内的术语来表示一热敏电阻规格。误差的典型规范值可能是加/减1度在25度或+/-2度从零度到100度。在电阻方面,类似的规范可能加/减10欧姆。这种误差被添加到其它测量系统不准确。 过流保护用PTC热敏电阻应用原理当电路处于正常状态时,通过过流保护用PTC热敏电阻的电流小于额定电流,过流保护用PTC热敏电阻处于常态,阻值很小,不会影响被保护电路的正常工作。当电路出现故障,电流大大超过额定电流时,过流保护用PTC热敏电阻陡然发热,呈高阻态,使电路处于相对'断开'状态,从而保护电路不受破坏。当故障排除后,过流保护用PTC热敏电阻亦自动回复至低阻态,电路恢复正常工作。通常而言有三种过流过热保护的类型:1、电流过载:RL1为正常工作时的负载曲线,当负载阻值减少,如变压器线路短路,负载曲线由RL1变为RL2,超过B点,PTC热敏电阻器进入保护状态;2、电压过载:电源电压增加,如220V电源线突然升到380V,负载曲线由RL1变为RL2,超过B点,PTC热敏电阻器进入保护状态;3、温度过热:当环境温度升高超过一定限度,PTC热敏电阻器伏-安特性曲线由A-B-E变成A-B1-F,负载曲线RL超过B1点,PTC热敏电阻器进入保护状态;PTC热敏电阻与NTC热敏电阻的全称PTC意思是正的温度系数,NTC意思是负的温度系数。PTC热敏电阻发展历史:PTC热敏电阻于1950年出现,随后1954年出现了以钛酸钡为主要材料的PTC热敏电阻。PTC热敏电阻在工业上可用作温度的测量与控制,也用于汽车某部位的温度检测与调节,还大量用于民用设备,如控制瞬间开水器的水温、空调器与冷库的温度,利用本身加热作气体分析和风速机等方面.下面简介一例对加热器、马达、变压器、大功率晶体管等电器的加热和过热保护方面的应用。NTC热敏电阻历史:NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了N1C热敏电阻器.</p 产品:富宽源电子供货总量:不限产品价格:议定包装规格:不限物流说明:货运及物流交货说明:按订单