车刀报废后的故事车刀报废后的故事今天在线上忙活时,听到一车加工中,怪叫声是一声接一声。当时也没反应过来,主要是一车加工时,都会出现因切削用量太大而宣布叽叽的声响。或是切削所消耗功率过大,引起V带短暂打滑的声响…唔…唔…。(厂里的车床都是V带直联主轴的,V带也非一般V带,里边的抗拉体为钢丝)这些声响早都习惯了,仅仅保全人员偶尔会报怨V带咋这个简单坏了?顷刻,一车就报警啦!曩昔一看,NC反常!主轴不动!想想这个警,经常报,没大联系,直接找保全来,好处理的很!话说保全师傅来了,当安全门打开的一瞬,眼前的一幕让人大吃一惊,刀片崩成两节,内孔车刀的刀杆现已死死的陷在工件的内孔里边,任凭保全师傅用多大的铜锤敲击,刀杆都纹丝不动,终只好把刀具从刀盘上下了下来,拿维修班吹焊去了!我想刀具是必定废了,好歹也值一千多块钱啊!就让我给遇上了!唉…咱们疑问,刀具这个惨烈的作废,必定是有原因的。这儿在介绍原因前,就让我来叙述一下刀具的详细模样。这把内孔车刀,切当说应该叫深孔车刀才妥贴,由于其长径比现已远远大于5了,其刀杆蕞前端也就15个毫米左右吧!从蕞前端往后端慢慢增大,刀杆上面开有两条螺旋槽,两条螺旋槽的前面,各开了三个定位面,用来装置左右对称两块刀片(刀片很小,用螺丝固定)。反正跟麻花钻多像的。咱们听来,大型非标定做车刀片,这把车刀规划相当的合理嘛!左右对称两刀片,切削时,力的大小是相等,方向相反,刚好形成一力偶,避免了刀杆单侧受力,引起的悬臂梁曲折变形,并且左右两刀片一起承担切削使命,刀片的切削条件天然要好的多。已然规划上没有问题,为啥仍是这个惨烈的作废了呢?这儿边就要从车刀执役的历史讲起了。车刀买回来后,天然是很好用了,但一次小小意外,一侧的刀片崩了。崩了就崩了嘛!一样持续切削没问题了,没什么大不了的。关键是当工人师傅准备换新刀片时,发现刀片的定位面现已破坏了,无法装置刀片了,这样就剩余一个刀片孤孤单单战斗了。按说现在只剩一个刀片了,切削用量应该减一减才对,不过这是理论上的,切削用量嘛,必定只有增没的减啦!否则单件切削时刻会延伸的,否则功率又低了。至于刀具寿数了,这个我就不晓得改没改了。改小了,我看用途也不大,总有那么一个刀片不到寿数就崩了的,一崩刀杆就完蛋。就这样,单侧刀刃切削了一个来月吧!效果很好啦!从没崩过,功率也没落下,认为从此能够天常地久了。不过今天就崩了,崩了后,刀杆持续进给,主轴持续滚动,仅仅这次一块刀片也没了,螺旋槽上开出的定位面做为刀具前刀面持续车削,终刀杆就死死的陷在工件的内孔里了,主轴直接中止滚动,然后报警,终刀具就惨烈的牺牲了!车刀惨烈的作废了,咱们可能要疑问了,不就作废一把车刀嘛?还有啥后续故事,换把新的持续。不过真不好意思,库房里没有。咱们这儿又想说:“哪买把新的”。还真不好意思,真的不好买,不是市面上没有这种车刀,而是国企的制度啊!买一把车刀要报要批,要找这个领导签字,要找哪个领导签字,非标圆刀片非标圆刀定做,费事死了。买这把车刀的时刻,少者等个把星期,多者就遥遥无期了。想想每天这个重的生产使命,靠等新刀的到来,仍是死了这条心吧!这不,车刀作废不到一小时,部门的工艺工程师,车间工艺技术员,就把地点事故车床围满了。不过这件事功率仍是挺高的,半天后,车间主任就叫我回原来的生产线持续干活了。哪这儿就让咱们来看看技术人员是怎么处理这个扎手问题的了。说来很简单啊!直接换了把很一般的内孔车刀,(主体就是一圆杆,前面装置一块小刀片哪种,再一般不过了)然后调整了一下每把车刀的刀补量就好啦!是啊!确实是好了,反正是粗车刀,加工出来的孔直径小了,没事!内孔表面布满了一条又一条很严重的螺旋型震痕,也没事!(现已不能用震纹来描述了,由于波峰与波谷间的高度都能够用毫米计量了)说来也是,反正是粗车刀,对加工出来孔的直径及表面质量没啥要求,精车余量也是足够的,不会对后续工序产生多大影响。哪还等什么,用就用吧!仅仅车削内孔时宣布的声响,比杀猪还刺耳几倍啊!真苦了我的耳朵了,可真真正正的苦恼还在后边了!前面我现已说了,这把车刀是用来加工深孔的,刀片,上把车刀在坏了后,技术人员换了一把一般的内孔车刀,新车刀除了悬伸量很长外,没有什么共同之处。哈哈!问题就出在这儿了,新车刀悬伸量太大,刚度极差啊!加工出来的孔小了,表面质量太差,加工过程中切削声响太刺耳,这儿就不谈了。而在我接连加工了十来个工件后,还发现了一个新缺陷,哪就是崩刀片啊!有时做一个零件就崩了,有时做几个又崩了,搞的我很动火啊!刀片换个不停了。不一会,刚刚散了的技术人员些又聚了过来了。这儿,咱们就不看技术人员咋处理这个问题了,咱们自己来理论谈讨一下。上面所谈到的一切加工问题,原因都在新装置的内孔车刀的刚度太差。而进步内孔车刀刚度,减小车刀轰动。在我看来,方法无非三种,下面依次讨论一下。榜首种方法,咱们首先翻书《材料力学》,上面说了,想进步悬臂梁的刚度,在这儿就要加大刀杆直径,削减悬伸量。不过这个还真行不通,工艺条件决议了,刀杆直径不能再小了,悬伸量不能再短了。已然这些条件无发改动了,哪咱们就选个弹性模量较大的刀杆来进步刀杆刚度总行了吧!不过又觉得钢材的弹性模量都差不多,没啥必要啊!哪咱们就把《材料力学》放一放,看看其它的。第二种方法,翻书《金属切削原理与刀具》,不过这儿,咱们先来了解一下新车刀装置好后,刀片各个独立的视点。榜首眼就看出来,刀尖圆弧半径太大了,形成背向力很大,所以引起轰动。再仔细看看,刀具主偏角差点快一了,切削时,刀尖先触摸工件,所以简单崩了。再看看,如同仍是个正直刃倾角,前角也太小了,副偏角也很小啊!哎呀!不看了不看了,刀具视点问题大大的有了。第三种方法,咱们接着翻书《机械制造基础》。这儿咱们就能够减小切削用量嘛!不过这种方法不可行,由于在厂里,功率是很重要的。当然了,还能够改动工艺道路了,详细说来就是把粗车孔这个工步,改成一道工序,用钻床钻了,只要余量够,也不怕粗基准运用两次(三爪卡盘夹持外圆了,定位基准面为毛丕外圆),但是这也不行了,由于这儿是标准化企业,没通用机床。说了这个多,咱们仍是来看看技术员又是哪个处理这个问题的呢?哈哈!换了块三角形刀片,刀片的视点变了。详细说来前角和副偏角变大了,主偏角和刀尖圆弧半径都变小了,刃倾角也变成了零度。车刀刀杆也换了,换了把重的,比原来哪把车刀重多了,我想弹性模量必定大了不少吧!试切了十来个工件,轰动小了许多,刀片也没崩。哪还等什么啊!持续操机! 关于一种特定的镍基合金,在特定的环境中存在着多种变量,包含:浓度、温度、通风姿、液(气)流速度、杂质、磨蚀、循环工艺条件等。这些变量会产生各种各样的腐蚀问题。这些问题都能在镍及其他合金元素中找到。金属镍直到达到熔点之直保持着奥氏体,面心立方结构。这就给韧脆转变供给了自由度,同时也大大减小了因其他金属一起并存而呈现的制作问题。在电化序上,镍比铁慵懒而比铜活波。因而,在还原性环境中,镍比铁要耐腐蚀,但没有铜耐腐蚀。在镍的基础上,加上铬之后,使合金具备了抗痒化功能,由此能够产生许多种应用规模十分广泛的合金,使他们能够对还原性环境和氧化性环境都有蕞佳的抵抗力。镍基合金与不锈钢和其他铁基合金比较,在固溶状态下能够容纳更多的合金元素,而且还能保持很好的冶金稳定性。这些要素允许增加多种多样的合金元素,使镍基合金大量的应用在千差万别的腐蚀环境中。镍基合金中常见的元素主要有:镍Ni供给冶金稳定性、进步热稳定性和可焊性、进步对还原性酸和柯性钠的抗腐蚀性、进步尤其是在氯化物和柯性钠环境中的抗应力腐蚀开裂功能。铬Cr进步抗痒化和高温抗痒化、抗硫化功能、进步抗点蚀、间隙腐蚀功能。钼Mo进步对还原性酸的抗腐蚀性、进步含氯化物水溶液环境下的抗点蚀、间隙腐蚀的功能、进步高温强度。铁Fe进步对高温渗碳环境的抵抗性、下降合金成本、操控热膨胀。铜 CuCu进步对还原性酸(尤其是那些用于空气不流转场合的硫酸和轻氟酸)和盐类的抗腐蚀性、铜增加到镍-铬-钼-铁合金中有助于进步对轻氟酸、磷酸和硫酸的抗腐蚀性。铝Al进步高温抗痒化性、进步时效硬化。钛Ti与碳结合,减少了热处理时发作碳化铬沉积形成的晶间腐蚀、进步时效强化。铌Nb与碳结合,减少了热处理时发作碳化铬沉积形成的晶间腐蚀、进步抗点蚀、间隙腐蚀功能、进步高温强度。钨W进步抗还原性酸和部分腐蚀的功能、进步强度和可焊性。氮N进步冶金稳定性、进步抗点蚀、间隙腐蚀功能、进步强度。钴Co供给增强的高温强度、进步抗碳化、抗硫化功能。这些合金元素中许多都能够与镍在很宽的成分规模内结合形成单相固溶体,保证合金在许多腐蚀条件下都具有杰出的抗腐蚀性。合金在完全退火的状态下,也具有杰出的力学功能,而无需忧虑制作加工或热加工中带来的有害的冶金改变。许多高镍合金能够通过固溶硬化、碳化物沉积、沉积(时效)硬化和弥散强化等方式进步强度。刀具经过砂轮刃磨后,刃口会存在不同程度的微观缺陷,在切削过程中,刀具刃口微观缺口极易扩展,加快刀具的磨损和损坏。刃口钝化是延常刀具寿命的金属切削配套技术,能有效减少或消除刃磨后的刀具刃口微观缺陷,以达到圆滑平整,提高刀具抗冲击性能,非标美工修边刀片定做,使刀具刃口锋利坚固。刃口钝化方式可分为传统刃口钝化和特种刃口钝化。传统刃口钝化方式主要包括磨削钝化、毛刷钝化、拖曳钝化和喷砂钝化等;特种刃口钝化方式主要包括激光钝化、电火花电蚀钝化、电化学钝化和磨料水射流钝化等。喷砂是以压缩空气为动力,以形成高速喷射束将喷料高速喷射到需要处理的工件表面,实现对工件表面的加工。由于磨料对工件表面的冲击和切削作用,工件的表面性能和形状会发生改变。而微喷砂技术是以传统喷砂技术为基础,采用微米级尺寸的磨料颗粒来进行待加工表面处理的技术,广泛应用于材料的表面处理,包括表面清洁、表面钝化和表面形貌处理。微喷砂处理的材料去除机理,包括裂纹扩展导致的脆性去除和磨料微切削产生的塑性去除。微喷砂技术在刀具领域主要应用在表面处理方面,如涂层刀具。通过对刀具基体表面进行相应的微喷砂处理,来改变基体的表面形貌,以增加涂层与刀具基体之间的粘结力,提高刀具的切削寿命。研究表明,对刀具的涂层表面进行微喷砂处理可以增加涂层硬度,提高刀具切削寿命。微喷砂技术在刀具刃口钝化领域没有得到广泛应用,理论研究还不充分。本文通过微喷砂技术对硬质合金刀片YT15进行刃口钝化,研究微喷砂工艺参数对刃口半径的影响以及微喷砂处理对刃口质量的影响,并分析微喷砂处理的材料去除机理。1试验步骤试验以喷砂压力P、磨料比重W和喷砂时间T为因素,其中磨料比重W为磨料占水和磨料总质量的比重。每个因素设4个水平,进行64组全因素刃口钝化试验,因素水平见表1。表1 ?微喷砂全因素试验因素水平采用湿式手动喷砂机,喷砂角度45°,喷砂距离8mm。磨料为320目白刚玉,微喷砂加工如图1所示。选用可转位硬质合金刀片YT15,其尺寸标准为SNMN120404,相应的材料性能见表2。通过激光共聚焦显微镜(LSM,Keyence VK-X200K)对微喷砂处理后的刀片刃口进行观测,试验观测指标为刀片刃口半径r和刃口线粗糙度Ra,终结果为三次测量后的平均值。同时对其刃口形貌进行扫描电子显微镜镜(SEM)观察,分析刃口材料去除机理。图1 ?硬质合金刀具YT15微喷砂加工示意图表2 ?硬质合金刀具YT15物理力学性能2试验结果与分析(1)微喷砂工艺参数对刃口半径的影响图2为硬质合金刀具YT15刃口半径随微喷砂各工艺参数的变化趋势。图2a、图2b、图2c和图2d分别是在喷砂时间为20s、30s、40s和50s时刃口半径随喷砂压力的变化图。对比发现,在相同的喷砂压力和磨料比重下,随喷砂时间的增加,刀具刃口半径增大,这实质上是材料去除随着时间累积的结果。在相同的喷砂时间和磨料比重下,随喷砂压力的增加,刀具刃口半径增大。这是因为随着喷砂压强的增加,磨料流的出口速度增加,单颗粒磨料速度也相应增加。硬质合金可看作是硬脆材料,根据单颗粒磨料冲蚀模型可知,单颗粒磨料的材料去除量与磨料颗粒的速度的指数成正比,使得单颗粒磨料的材料去除量增加。同时磨料流速度的增加,使单位时间内有效冲击刀具刃口的磨料颗粒数量增加,刃口材料的去除量变大。因此,增加喷砂压力相当于既增加磨料比重又增加喷砂时间,两者的共同作用使刃口半径增大。由图2分析磨料比重对刀具刃口半径的影响可知,在喷砂压力为0.2MPa和0.25MPa时,随着磨料比重的增加,刀具的刃口半径先增大而后减小;而在喷砂压力为0.3MPa和0.35MPa时,随着磨料比重的增加,刀具的刃口半径呈现一直增大的趋势。同理,根据单颗粒磨料冲蚀模型分析可知,当喷砂压力较小时,随着磨料比重的增加,虽然单颗粒磨料速度减小,但是单位体积内磨料颗粒的数量增加,造成单位时间内磨料颗粒对刀具刃口的冲击次数增加,所以刃口材料的去除量变大。当磨料比重过大时,根据能量守恒可知,磨料流的速度减小很多,其中磨料颗粒的速度大幅降低,不仅减少了单颗粒磨料材料的去除量,也使单位时间内磨料对刀具刃口的冲击次数减少,进一步减少材料去除量,使得刃口半径随着磨料比重的增加先增大后减小。当喷砂压力较大时,随着磨料比重的增加,在单位时间内增加的磨料对刀具刃口的冲击次数所增加的材料去除量要多于单颗粒磨料速度降低而减少的材料去除量。总的来说,单位时间内材料去除量增加,因此在较大喷砂压力下,刀具的刃口半径随着磨料比重的增加而增加。(a)T=20s(b)T=30s(c)T=40s(d)T=50s图2 ?刃口半径随微喷砂各工艺参数的变化趋势(2)微喷砂处理对刃口线粗糙度的影响图3是硬质合金刀片YT15经过微喷砂刃口钝化处理前后的切削刃形貌。采用微喷砂工艺参数:喷砂压力P=0.2MPa,磨料比重W=0.1,喷砂时间T=30s。通过测量得到切削刃的相关参数见表3。图3 ?未处理刀片与微喷砂刃口钝化刀片的切削刃形貌可以发现,硬质合金刀片YT15的刃口轮廓由原来的r=6μm锐刃变成r=27μm的圆弧刃口。其切削刃形貌得到改善,刃口线粗糙度Ra由原来的0.79μm下降到0.5μm,Ry则由原来的6μm下降到3μm。这是由于微喷砂处理消除了刀具刃磨时产生的微观缺陷,改善了刃口质量。表3 ?未处理刀片与微喷砂刃口钝化刀片刃口参数对比(μm)图4是微喷砂全因素试验时硬质合金刀片YT15的刃口线粗糙度的分布情况。可以得出,硬质合金YT15刀片的刃口线粗糙度为0.3-0.8μm,满足刀片的刃口粗糙度要求。图4 ?硬质合金刀具YT15刃口线粗糙度分布(3)微喷砂刃口材料去除机理研究刀片的微喷砂过程实质上是高速磨料射流冲击材料表面,实现材料的去除。其材料去除机理主要归结为磨料颗粒对材料的去除方式。对于脆性材料,其去除机理往往不只有脆性去除,还包括磨料颗粒的微剪切引起的塑性去除。图5是硬质合金刀具YT15在喷砂压力P=0.25MPa、磨料目数M=320、喷砂时间T=20s和磨料比重W=0.1时的刃口形貌。可以看出,经过微喷砂处理后,刀具出现了圆弧刃口,对其圆弧刃口的区域A进行放大,可以观察刃口材料去除形成的微观形貌。通过区域B可以看出,其硬质合金中硬质相的去除多为由裂纹扩展造成的脆性断裂,这是由于棱角尖锐的磨料颗粒对于硬质相的冲击作用,使之产生径向裂纹和侧向裂纹,由于磨料颗粒的高频率冲击,进而造成侧向裂纹的扩张形成网状裂纹,达到材料的去除。对于C区域的观察,也可以发现刃口材料上存在磨料颗粒的刻划痕迹,这主要是由于具有锋利刃口的白刚玉磨料颗粒对工件材料的微切削作用导致。由于刀具材料中除硬质相成分外,还包括粘结相,其微切削作用相对于粘结相更为明显,粘结相材料先于硬质相去除,使得硬质相成分显露出来。因此微喷砂处理硬质合金刀具YT15的材料去除机理,包括由磨料冲击和水楔作用引起裂纹扩展而导致硬质相材料的脆性去除,还包括磨料颗粒的微切削作用引起的材料塑性去除。图5 ?硬质合金刀具YT15微喷砂刃口形貌SEM图小结微喷砂处理可以对硬质合金刀具YT15刃口进行有效钝化,形成一定圆弧半径的刀具刃口。研究表明,刃口圆弧半径随着微喷砂时间和喷砂压力的增加而增大。对于磨料比重而言,在喷砂压力为0.2MPa和0.25MPa时,随着磨料比重的增加,刀具刃口半径先增大而后减小;在喷砂压力为0.3MPa和0.35MPa时,随着磨料比重的增加,刀具刃口半径呈现一直增大的趋势。微喷砂处理可有效改善硬质合金刀具YT15的刃口质量,消除微观缺陷,降低刃口线粗糙度,在结构上对刀具刃口进行钝化。硬质合金刀具YT15刃口材料的去除机理,包含由裂纹扩展而导致硬质相材料的脆性去除和微切削作用引起的材料塑性去除。 刀片-定做非标刀片-非标圆刀片非标圆刀定做由常州昂迈工具有限公司提供。常州昂迈工具有限公司(www.onmy-tools.com)拥有很好的服务与产品,不断地受到新老用户及人士的肯定和信任。我们公司是商盟认证会员,点击页面的商盟客服图标,可以直接与我们客服人员对话,愿我们今后的合作愉快! 产品:昂迈工具供货总量:不限产品价格:议定包装规格:不限物流说明:货运及物流交货说明:按订单