根据本发明的一种实施方式,在步骤s3中,首先获得9张不同角度的图片,对第0幅图片进行镜片区域定位,苏州字符检测,然后对剩余8张图片的镜片区域进行主动区域屏蔽,分别获得每一张图片的检测区域,即通过镜片区域减去屏蔽区域的方式获得每一种图片的检测区域,然后所有检测区域进行值法融合为一张检测图片,进行全局阈值分割方法、动态阈值分割方法或均值阈值分割方法进行分割,对于不同张图片同一位置处的缺陷选取面积缺陷作为该位置的缺陷,判断产品是否合格。 由于CNN强大的特征提取能力,采用基于CNN的分类网络目前已成为表面缺陷分类中的模式一般来说,字符识别检测,现有表面缺陷分类的网络常常采用计算机视觉中现成的网络结构,包括AlexNet, VGG, GoogL eNet,ResNet,检测中文字符,SENet, ShuteNet,MobileNet等。利用分类网络结合上滑动窗口的方式可以实现缺陷的定位。Deep learning-based crack damage detection using convolutional neural networks根据本发明的一个方面,在所述步骤s24中:将同一位置处的缺陷筛选出来后,利用设定大小的矩形核膨胀得到比实际缺陷略大的roi区域,提炼出所述roi区域大小的原图;根据公式:c=∑δδ(i,ocr字符检测,j)2pδ(i,j)计算出所述roi区域图像的对比度,筛选出同一位置处对比度缺陷作为表现清晰的缺陷;其中δ(i,j)=|i-j|表示相邻像素间灰度差,pδ(i,j)表示相邻像素间的灰度差值为δ的像素分布概率。 ocr字符检测-宣雄智能-苏州字符检测由苏州宣雄智能科技有限公司提供。苏州宣雄智能科技有限公司拥有很好的服务与产品,不断地受到新老用户及人士的肯定和信任。我们公司是商盟认证会员,点击页面的商盟客服图标,可以直接与我们客服人员对话,愿我们今后的合作愉快! 产品:宣雄供货总量:不限产品价格:议定包装规格:不限物流说明:货运及物流交货说明:按订单