光学方案中又有多种光学原理,其中现阶端常见的是:光波导和半反半透。目前包括Magic Leap在内的AR头显大都采用光波导显示技术,该技术的原理是微显示屏向光波导的一侧投射光线,通过全内反射原理,光线会在光波导内反射和传播,然后从另一边反射出来,终反射到用户眼中。
光波导的优势是可以实现较小的机身体积,而劣势则是图像质量存在部分问题。此外,光波导光学效率较低,对微显示屏的
光学系统公司
光学方案中又有多种光学原理,其中现阶端常见的是:光波导和半反半透。目前包括Magic Leap在内的AR头显大都采用光波导显示技术,该技术的原理是微显示屏向光波导的一侧投射光线,通过全内反射原理,光线会在光波导内反射和传播,然后从另一边反射出来,终反射到用户眼中。
光波导的优势是可以实现较小的机身体积,而劣势则是图像质量存在部分问题。此外,光波导光学效率较低,对微显示屏的要求也更高,现有光波导主要配合LCoS和Micro OLED微显示屏。
而半反半透虽然比光波导设计起来要复杂,但原理更简单,而且成本远光波导方案。Daniel表示:一个常见的误区是,即使是在追求大FOV的前提下,采用半反半透光学的AR眼镜也可以比Meta 2的体积更小。
眼底照相机光学系统
眼底仪器由照明、观察瞄准、成像探测(CCD)三个部分组成。照相系统将光源的光引入眼底,观察瞄准系统用于寻找病变区,成像探测系统将眼底的显微图像显示在屏幕上或摄录成资料。
眼底电视成像光学系统
眼底图像通过眼光学系统后出射的是平行光,经网 膜物镜后成像在后焦平面上,通过成像物镜把次所成的像O′A′成像在CCD光靶上,即O″A″。与眼底相机相比,的区别是:用密测试技术方面的研究,CCD取代照相底片,是一个探测器,且倍率是缩小的。
共轴照明光学系统
眼底电视光学系统采用传统的共轴照明光学系统,中空反射镜把照明系 统的光束反射在网膜物镜的边缘部分,在眼瞳上形成环形照明光束 (光阑像),从而照亮眼底。成像光束从被照亮的眼底通过眼瞳孔,由网膜物镜成次像,成 像光束通过反射镜的中间孔,经成像物镜成像在CCD上。

光学系统对机器视觉应用的重要性
对于尺寸测量,采取理想的打光方式,采集到的图像边缘清晰,特征明显,很容易提取到目标轮廓信息,可以使用简易的算法测量,得到结果。这对提高软件的稳定性与性有很大的帮助。但是每一种实际应用对图像质量的要求是不相同的,有时需要清晰的图像,有时反而模糊的图像对特征提取更理想。
初学者可能没有这样的感觉,但是对于老手来说,看似简单容易的光学系统,其实是机器视觉系统为关键的部分,往往关系到视觉系统的成败。打光的主要目标是选择合适的光源以某种合适的方式将光线投射到被测物体上,突出被测特征部分与背景的对比度,降低后续软件算法的难度,提高软件的稳定性。

当时解决办法就是尽量减小物镜表面的曲率,
这样能有效减小色差,这样做的缺点也是显而易见的,由于物镜曲率减小,其焦距和镜筒的尺寸必须拉得很长,大口径光电装备决定了人类空间观测能力的极限,可展开光学成像技术、薄膜反射镜成像技术、衍射望远镜成像技术等新技术的研究则提升了光学系统的空间分辨率,促进大口径、大视场光学系统不断突破。目前经过我国多个光学科研单位多年的攻关,已经成功了相关核心技术,实现了光学前沿技术的跨越。

(作者: 来源:)