(1)当导叶数减少时,随着导叶数的增加,烘干风机的性能优于风机。采用21个导叶的方案3是较佳方案,有效地提高了总压效率。同时,改造后的轴功率略有增加,方案3的功耗有所增加。
(2)当流场数据加载到固体区域表面时,叶片的应力、总变形和固有频率基本不变。离心力对叶片的强度和振动起着决定性作用,而空气动力对其影响不大。叶片的工作转速远一阶临界转速
烘干风机
(1)当导叶数减少时,随着导叶数的增加,烘干风机的性能优于风机。采用21个导叶的方案3是较佳方案,有效地提高了总压效率。同时,改造后的轴功率略有增加,方案3的功耗有所增加。
(2)当流场数据加载到固体区域表面时,叶片的应力、总变形和固有频率基本不变。离心力对叶片的强度和振动起着决定性作用,而空气动力对其影响不大。叶片的工作转速远一阶临界转速,不会发生共振。
(3)综合考虑方案3风机性能、轴功率、强度、振动分析结果,减少一套导叶,也可降低设计制造成本。由此可见,减径导叶方案3对实际生产和改造具有一定的参考意义。叶尖间隙对动轴流风机实际失速线的影响。
结果表明,烘干风机叶顶间隙过大,使风机实际失速线与理论失速线有较大偏差。实际失速线向下移动,同时会造成较大的负效率偏差。详细描述了试验过程,分析了操作点在性能曲线上的位置。后通过接近失速试验确定风机的实际失速线位置。为了找出振动超标的原因,首先要对振动源进行分析,然后采取适当的措施,有效地解决大振动问题。通过引入相关系数,研究了叶尖间隙与失速点压力偏差、效率偏差的关系。烘干风机叶顶间隙与失速点的相对压力偏差相关系数为-0.99,即叶顶间隙越大,实际失速线与理论失速线的偏差越严重,实际失速点的负压偏差越严重。同时,叶顶间隙与效率偏差的相关系数为-0.93,即叶顶间隙越大,负效率偏差越大。
烘干风机轴承箱常见故障的分析与处理。
(1)轴承箱漏油、渗油:进油过多、回油不良、空气平衡管堵塞、骨架密封老化失效、油管接头密封不良、油温过高、油气渗透性过大等,都会引起轴承箱漏油或渗油。可以采取适当措施减少油量,清洁平衡管,更换骨架油封,更换油管和油封,降低机油温度。
(2)轴承中出现铜粉:a)中间轴热膨胀储备不足,轴向推力过大,出现铜粉,应正确调整中间轴预留膨胀量;当烘干风机内部流场复杂时,会产生紊流和气流,从而使旋转风机的性能下降。b)酸性物质腐蚀轴承,应立即采取预防措施,并密封轴承。应更换RTS;c)如果油受到污染,必须清洁油系统并更换合格的油;如果油的含水量超过标准,油可以脱水或直接用过滤器更换。更换机油。
(3)烘干风机轴承温度高:进油量过小、进油温度过高或轴承被污染后因摩擦和发热而损坏,可使轴承温度升高,适当调整油管或降低油箱的油温或更换损坏的轴承。
(4)轴承振动较大:振动的原因很多,如烘干风机叶片损坏、转子不平衡、联接位置差、连接螺栓松动、基础刚度不足、叶片漂移、转子易损件磨损和轴承损坏等,都会引起轴承振动。在采取措施之前,必须找出正确的原因,然后采取具体措施。


液压润滑站故障分析及处理措施。液压润滑站由油箱、油泵装置、滤油器、冷却器、仪表、管路、阀门等组成。油站漏油或调节油压不稳定,不仅影响风机的调节性能,而且危及烘干风机的安全。容易发生的主要故障有:
1)供油压力达不到要求:主要原因是单向阀泄漏,油流短路,导致压力无法维持,应检查并清洗相应的单向阀;
2)机油温度偏高:主要原因是温度控制阀的合理选择,导致冷却器不能发挥应有的作用,冷却效果差,油温高。当出现这种问题时,可以检查温控阀的参数,一般应为29-41摄氏度。
3)接头漏油:由于导管架安装不到位,应按要求预缩。管头应伸出5-10 mm,端面应平直。风机运行中常见问题的处理措施(1)风机运行中的振动问题。振动是风机运行中固有的,只要烘干风机旋转的机械会产生振动。如果振动控制在一定的标准范围内,并能安全地用于风机,则振动可视为正常运行现象。在63Hz处降噪量约30dB,通过治理前后噪声的A计权测量值对比,治理后烘干风机进风口噪声降噪量为27dB(A)。但当振动达到一定程度时,会对风机造成一定的损坏,甚至造成严重的安全事故。风机运行中振动测量一般有两种形式:振动速度(V),用mm/s表示,振动振幅(S),用mm表示。根据,振动是以振动速度来评价的,但有些仍然采用振动幅度评价法,这两种方法都可以用振动测量仪来测量。
(作者: 来源:)