人脸识别的工作原理
人脸识别顾名思义就是识别人脸的系统,人脸识别系统采用区域特征分析算法,融合计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,实现在大规模人脸图像数据库中进行人脸检索。从各种采集源获取的人脸图像可以迅速地与预先存储的数以千万计的图像数据库如逃犯照片库、失踪人口照片库、常住人口照片库等
人脸识别算法
人脸识别的工作原理
人脸识别顾名思义就是识别人脸的系统,人脸识别系统采用区域特征分析算法,融合计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,实现在大规模人脸图像数据库中进行人脸检索。从各种采集源获取的人脸图像可以迅速地与预先存储的数以千万计的图像数据库如逃犯照片库、失踪人口照片库、常住人口照片库等)完成比较,返回一个包含若干相似人脸图像的匹配列表。支持照片比照片、视频流比照片、视频流比视频流等多种方式。可以实现在局域网、内部网、Internet上进行照片比对和身份确认。
影响人脸识别系统对人脸采集的主要因素有哪些?
1.图像大小:人脸图像过小会影响识别效果,人脸图像过大会影响识别速度。非
人脸识别摄像头常见规定的蕞小识别人脸像素为60*60或100*100以上。在规定的图像大小内,算法更容易提升准确率和召回率。图像大小反映在实际应用场景就是人脸离摄像头的距离。
2.图像分辨率:越低的图像分辨率越难识别。图像大小综合图像分辨率,直接影响摄像头识别距离。现4K摄像头看清人脸的远距离是10米,7K摄像头是20米。
3.光照环境:过曝或过暗的光照环境都会影响人脸识别效果。可以从摄像头自带的功能补光或滤光平衡光照影响,也可以利用算法模型优化图像光线。
4.模糊程度:实际场景主要着力解决运动模糊,人脸相对于摄像头的移动经常会产生运动模糊。部分摄像头有抗模糊的功能,而在成本有限的情况下,考虑通过算法模型优化此问题。
5.遮挡程度:五官无遮挡、脸部边缘清晰的图像为蕞佳。而在实际场景中,很多人脸都会被帽子、眼镜、口罩等遮挡物遮挡,这部分数据需要根据算法要求决定是否留用训练。
6.采集角度:人脸相对于摄像头角度为正脸蕞佳。但实际场景中往往很难抓拍正脸。因此算法模型需训练包含左右侧人脸、上下侧人脸的数据。工业施工上摄像头安置的角度,需满足人脸与摄像头构成的角度在算法识别范围内的要求。
人脸识别在闸机领域的应用场景
人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。针对输入的人脸图像或者视频流,首先判断其是否存在人脸,如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部的位置信息。然后依据这些信息,进一步提取每个人脸中所蕴涵的身份特征数据,并将其与已知的人脸进行对比,从而识别每个人脸的身份。
人脸识别在闸机领域的应用场景
1、员工上班人脸闸机通道
2、火车站旅客入站人脸闸机通道
3、机场人脸识别闸机通道
4、学校人脸识别闸机通道
5、景区人脸识别闸机通道
6、小区人脸识别闸机通道
(作者: 来源:)