为了探索大负荷大流量风机的关键气动设计技术和内部流动机理,本文设计了一台烘干供风机,其压力比为1.20,负荷系数为0.83。详细研究了流量系数、反力等设计参数的影响规律,给出了相应的选择原则。以、高负荷为设计目标,通过合理选择总体参数,优化了烘干供风机流面叶片的初步设计和三维叠加,实现了轴流风机的气动设计。分析了叶片负荷调节、叶片弯曲和叶片端部弯曲
烘干供风机
为了探索大负荷大流量风机的关键气动设计技术和内部流动机理,本文设计了一台烘干供风机,其压力比为1.20,负荷系数为0.83。详细研究了流量系数、反力等设计参数的影响规律,给出了相应的选择原则。以、高负荷为设计目标,通过合理选择总体参数,优化了烘干供风机流面叶片的初步设计和三维叠加,实现了轴流风机的气动设计。分析了叶片负荷调节、叶片弯曲和叶片端部弯曲对叶栅流动、级匹配和级性能的影响,给出了高负荷轴流风机三维叶片设计的基本原则。同时,开发了S1流面协同优化方法,取得了较好的效果。降低了定子损耗,增大了风机裕度。高压风机的设计通常采用离心风机,但离心风机存在迎风面积大、流量小、效率低等缺点。针对大流量、高压力比、率的设计要求,如何完成单级轴流设计成为研究的重点。长期以来,轴流风机的设计方法得到了发展。从孤立叶型法、叶栅法、降功率法到目前广泛采用的准三维、全三维气动设计方法,甚至到S1流面叶型优化[6]、三维叶型优化、烘干供风机三维叶型技术,已经有了大量的研究工作。用于提高设计方法的准确性和性。以率、高负荷为设计目标,通过合理选择总体参数,优化了烘干供风机流面叶片的初步设计和三维叠加,实现了轴流风机的气动设计。

从烘干供风机的一般参数出发,通过一维径向参数和子午向径向参数的设计,得到了初步设计方案的性能预测和几何参数。初步方案利用现有的标准叶片型线对三维叶片进行几何建模,通过求解三维稳定流场对初步设计方案进行验证。转子和定子叶片,而转子叶片进口马赫数略有增加,导致级效率提高。一维参数设计主要是求解平均半径气动参数的控制方程。采用逐级叠加法对多级压缩系统进行了气动计算。同时调整了烘干供风机相应的攻角、滞后角和损失模型。后,得到了平均半径和子午线流型下的基本气动参数。计算中使用的损失和气流角模型需要大量的叶栅试验作为支撑。现有的实验改进模型包括经典亚音速叶片型线NACA65、C4和BC10,基本满足了风机的初步设计要求。为了准确、地得到初步设计方案,将现有的经典叶片型线直接用于一维设计和初步设计。当设计负荷超过原模型时,采用MISES方法对S1流面进口断面进行分析,得到初始滞后角,如本文对高负荷风机的设计。在S2流面设计中,烘干供风机采用流线曲率法对S2流面进行了流量计算。为了简化计算过程,将计算假设为无粘性和恒定绝热,忽略了实际涡轮机械中的三维、非定常和粘性流动特性,引入了叶排损失来表示叶栅中流体粘度的影响。通过三维流场的数值分析,修正了求解S2流面过程中的损失,并通过迭代得到了初步设计方案。
通过在烘干供风机叶尖压力面附近扩展合适的叶尖平台,可以有效地减小叶尖泄漏和气动损失。模拟了三种烘干供风机不同长度和初始位置的吸力面小翼叶栅的内部流场。5时基本保持不变,说明叶尖间隙形状的变化对叶片底部到中部没有影响,但在方案2下,烘干供风机叶尖间隙高于均匀间隙,而叶片TiP间隙小于均匀间隙。结果表明,三段小翼可以改善叶栅顶部的流动状况,并在不同程度上削弱泄漏涡的强度。周志华等[10]计算了某型涡轴发动机高压涡轮一级的三维流场。结果表明,锥形间隙能有效地控制间隙内的泄漏流速,减少间隙内的堵塞,从而提高其整体性能。在套管处理方面,Yang等人[11]发现自循环壳体处理后压缩机的稳定流量范围明显增大,这是由于叶片负荷降低、低能流体吸附能力降低和周向流量畸变能力降低所致。烘干供风机的不同分区数的非轴对称套管处理。实验表明,合理的非轴对称壳体处理结构可以使压缩机的稳定裕度提高13%,峰值效率提高0.8%。提率的原因是加工槽对压气机叶顶流场产生低频非定常影响信号。烘干供风机在低速压缩机上测试了不同结构的斜槽壳体处理。实验表明,合理的配置可以提高压缩机效率1%~2%,而不会对失速裕度产生不利影响。
(作者: 来源:)