ICP-MS简述
20世纪60年代末期,采用电感耦合等离子体源的原子光谱技术成为当时应用于微量元素分析的一项非常有前
途的技术(Greenfield等,1964; Wendt与Fassel, 1965)。但在分析超低含量物质时由于背景光谱增强,光谱干扰
严重使分析灵敏度和准确度达不到要求。只有质谱法能同时满足谱图简单、分辨率适中和较低检出限的要求。因此, IC
电感耦合等离子体质谱仪价格
ICP-MS简述
20世纪60年代末期,采用电感耦合等离子体源的原子光谱技术成为当时应用于微量元素分析的一项非常有前
途的技术(Greenfield等,1964; Wendt与Fassel, 1965)。但在分析超低含量物质时由于背景光谱增强,光谱干扰
严重使分析灵敏度和准确度达不到要求。只有质谱法能同时满足谱图简单、分辨率适中和较低检出限的要求。因此, ICP-AES所具有的样品易于引入、分析速度快、多元素同时分析的特点与质谱仪的联用成为科学和商业上研究的
热点。1970年许多公司深入的参与了该技术的研究,CP作为发射源使等离子体中分析物有效电离能够满足新一代
仪器源的要求。同时也注意到惰性气体在大气压下的电等离子体可能是一个很好的离子源。因此人们采用四极杆 质量分析器和通道式离子检测器开展可行性研究。Gral在70年代中期首先报道了用等离子体作为离子源的质谱分 析法。1981年Gray在Surrey实验室设计完成了 ICP源上所预期性能的设备,获得了张ICP谱图。1983年英 国VG公司与加拿大Sciex公司推出商业化的ICP-MS,1984年在用户实验室才安装ICP-MS。在此以后 ICP-MS在化学分析中广泛应用开来。
电感耦合等离子体质谱法测定化妆品中的37种元素
立电感耦合等离子体质谱法测定化妆品中37种元素的检测方法,根据化妆品不同基质,选用-微波消解体系或-湿法消解体系,采用在线内标及碰撞反应池技术校正机体效应,外标法
定量进行ICP-MS测定。方法检出限1 ~ 80瞄/kg,线性相关系数均大于0.997, RSD为1.0% - 8.9%, 加标回收率为81.3% ~ 115.2%。实验结果表明,该方法简便、、灵敏度高、准确性好,适用于化妆品中37种元素的同时测定。
钢研纳克国产ICP-MS具有多元素同时检测的优势,灵敏度高、 线性范围宽,既适用于样品中痕量元素的检测也能同时满足微量元素的测定。ICP-MS分析中干扰问题是影响分析 结果准确度和精密度的障碍,其主要的干扰方式分为质谱干扰、基体干扰和物理效应干扰三大类。质谱干扰
可通过选择合适的同位素离子及仪器校正消除;物理干扰可通过清洗雾化室,进样锥及进样管路消除;基体干扰 是指复杂的基体引起的ICP平衡的转变,对待侧元素的质谱信号产生抑制或增应,可采用加入内标元素校正
和采用碰撞/反应池技术消除。针对化妆品的不同剂型,应用微波消解和湿法消解体系,建立了电感耦合等离子体 质谱对8类化妆品中37种元素的测定方法,为化妆品中重金属及其他有害元素的监测提供了技术支持。
同位素及内标元素的选择
选择干扰小且丰度高的同位素。在ICP-MS分析过程中,分析信号会随时间而发生漂移,而且化妆品样品在分
析时的基体效应明显,被测物信号会出现抑制或增应,使用内标元素,可以有效补偿信号漂移和基体效应。 内标元素应选择和目标元素性质相近、待侧试样不含有且不会对目标元素测定产生干扰的元素,常用的内标元素
为自然界中很少存在的元素,如:铳、钇、铑、锢、铼等,在化妆品样品测试过程中,发现样品中经常含有铳、 钇等元素,因此选用铑、铼为内标元素。在内标液配置过程中,可加入适量(浓度小于5%)等, 起基体匹配的作用,使待测结果更准确。各待测同位素的选择,分子离子的干扰情况和内标元素的选择见表2。
本文建立的电感耦合等离子体质谱法能满足化妆品中37种元素定量检测的各项技术要求,实验结果表明:方
法具有简便、准确、的特点,具有良好的精密度和回收率,适合于化妆品中多元素的同时测定。
ICP-MS测定纯锌中的微量元素
电感耦合等离子体质谱法是检测复杂体系中微量和痕量元素的一种分析技术,具有灵敏度高、检测限低、
精密度好、线性范围宽及多元素同时测定等特性。本文主要研究了 ICP-MS法测定纯锌样品中铁、铜、镉、
锑、铅、锡等微量元素。本采用溶解样品,定容分析,本方法具有样品处理简单,容易操作, 测定准确度高,精密度好,检出限低等优点。
锌因为具有优良的抗大气腐蚀性能,所以被主要用于钢材和钢结构件的表面镀层(如镀