压力容器的设计要求
由于产品有密封要求,因此在壳体内表层需要有一层密封层来保证壳体的密封性;在此产品中,采用了橡胶制作密封内衬层,成功地解决了壳体的密封问题;在密封内衬层的外面是壳体的承载结构层,主要由碳纤维复合材料构成,碳纤维复合材料较玻璃纤维复合材料密度小、且尺寸热稳定性高,这些特点对减轻壳体重量及提高密封性都起着积极作用;容器的设计压力确定应按《钢制压力
不锈钢塔器价格
压力容器的设计要求
由于产品有密封要求,因此在壳体内表层需要有一层密封层来保证壳体的密封性;在此产品中,采用了橡胶制作密封内衬层,成功地解决了壳体的密封问题;在密封内衬层的外面是壳体的承载结构层,主要由碳纤维复合材料构成,碳纤维复合材料较玻璃纤维复合材料密度小、且尺寸热稳定性高,这些特点对减轻壳体重量及提高密封性都起着积极作用;容器的设计压力确定应按《钢制压力容器》GB150-1998的相应规定。密封内衬层与承载结构层之间界面的粘接采用一种特殊的粘接工艺和粘接剂进行粘接。
压力容器的发展
压力容器种类多,操作条件复杂,有真空容器,也有高压超高压设备和核能容器;它是在石油化学工业、能源工业、科研等国民经济的各个部门都起着重要作用的设备。温度也存在从低温到高温的较大范围,处理的介质大多具有腐蚀性,或易r、易b、有毒。这种多样性的操作特点给压力容器从选材、制造、检验到使用、维护以致管理等诸方面造成了复杂性,因此对压力容器的制造、现场组焊、检验等诸多环节提出了越来越高的要求。
压力容器涉及多个学科,综合性很强,一台压力容器从参数确定到投入正常使用,要通过很多环节及相关部门的各类工程技术人员的共同努力才能实现。
压力容器内外部检验这种检验必须在停车和容器内部清洗干净后才能进行。检验的主要内容除包括外部检查的全部内容外,还要检验内外表面的腐蚀磨损现象;用肉眼和放大镜对所有焊缝、封头过渡区及其他应力集中部位检查有无裂纹,必要时采用超声波或射线探伤检查焊缝内部质量;测量壁厚。若测得壁厚小于容器壁厚时,应重新进行强度校核,提出降低压力使用或修理措施;压力容器分类按压力等级分类:压力容器可分为内压容器与外压容器。对可能引起金属材料的金相组织变化的容器,必要时应进行金相检验;高压、超高压容器的主要螺栓应利用磁粉或着色。
有无裂纹的检查等。通过内外部检验,对检验出的缺陷要分析原因并提出处理意见。修理后要进行复验。压力容器内外部检验周期为每三年一次,但对强烈腐蚀性介质的容器检验周期应予缩短。为了使压力容器在确保安全的前提下达到设计、结构合理、易于制造、使用可靠和造价经济等目的,各国都根据本国具体情况制定了有关压力容器的标准、规范和技术条件,对压力容器的设计、制造、检验和使用等提出具体和必须遵守的规定。运行中发现有严重缺陷的容器和焊接质量差、材质对介质抗腐蚀能力不明的容器也均应缩短检验周期。
压力容器安装中冷裂纹产生原因
淬火作用近缝区或焊缝上所形成的冷裂纹与金属相变过程中力学性能的急剧变化和复杂的应力状态有关。冷裂纹主要发生在中碳钢、高碳钢和高强度钢中。这类钢的主要特点是易于淬火,形成脆硬的马氏体组织。特别是在焊接条件下近缝区的加热温度很高,熔合线附近则在1350℃以上,使奥氏体严重过热,晶粒显着长大。由金属学可知,晶粒粗大的奥氏体更容易淬火,转变为粗大的马氏体组织,使近缝区金属性能变坏,特别是塑性下降,脆性增加。(4)储存压力容器(代号C,其中球罐代号B):主要是用于储存、盛装气体、液体、液化气体等介质的压力容器,如各种型式的储罐。这时在复杂的焊接应力的作用下,就会发生冷裂纹。
氢的作用在焊接高温下,一些含氢的化合物分辨析出原子状态的氢,大量的氢溶解于熔池金属中。随着熔池温度的下降,氢在金属中的溶解度急剧降低。但焊接熔池的冷却速度很快,氢来不及逸出而残留在焊缝金属中。氢在奥氏体和铁素体中的溶解度及扩散能力也有显着差别。通常焊缝金属的碳当量总比母材低一些,因而焊缝在较高温度下就发生奥氏体分解,这时近缝区还尚未发生奥氏体转变。由于焊缝金属中氢的溶解度突然下降,扩散能力提高,氢就向近缝区的奥氏体中扩散。这样就使近缝区聚集了大量的氢。随着温度的下降,安装近缝区的奥氏体发生转变时,温度已经很低,氢的溶解度更低,而且扩散能力也已很微弱。压力容器的设计要求由于产品有密封要求,因此在壳体内表层需要有一层密封层来保证壳体的密封性。于是氢便以气体状态进到金属的细微孔隙中并造成很大的压力,使局部金属产生很大的应力,从而形成冷裂纹。
综上所述,压力容器安装产生冷裂纹的原因有两个:一个是金属的脆化;一个是焊接应力的作用。如有问题,欢迎来电咨询。
(作者: 来源:)