磁控溅射法定义是什么?
磁控溅射法是在高真空充入适量的Ar气,在阴极(柱状靶或平面靶)和阳极(镀膜室壁)之间施加几百K直流电压,在镀膜室内产生磁控型异常辉光放电,使Ar气发生电离。Ar离子被阴极加速并轰击阴极靶表面,将靶材表面原子溅射出来沉积在基底表面上形成薄膜。
离子溅射镀膜机
多靶离子束溅射镀膜机系统在光学薄膜沉积应用中处于较高地位。多
PVD离子镀膜机厂家
磁控溅射法定义是什么?
磁控溅射法是在高真空充入适量的Ar气,在阴极(柱状靶或平面靶)和阳极(镀膜室壁)之间施加几百K直流电压,在镀膜室内产生磁控型异常辉光放电,使Ar气发生电离。Ar离子被阴极加速并轰击阴极靶表面,将靶材表面原子溅射出来沉积在基底表面上形成薄膜。
离子溅射镀膜机
多靶离子束溅射镀膜机系统在光学薄膜沉积应用中处于较高地位。多靶离子束溅射镀膜机是当今仅存的在同一系统可互换使用行星型,简单旋转型或可翻转型基片装置的系统。
在通信应用上,能用于沉积高产值的200,100和50GHz具有窄通带,宽截止频带,高隔离度,低插损特性的DWDM滤波器,满足为严格的性能指标。在其它光学应用上,多靶离子束溅射镀膜机能用于沉积增透膜,复杂的非四分之一波长膜层,以及吸收和散射百万分位的超低损耗激光镜。
磁控溅射真空镀膜机的主要用途有哪些
磁控溅射技术在市场上运用非常广泛,也受到了众多商家的采纳,自然磁控溅射真空镀膜机也被众多商家认可,下面至成真空小编为大家详细介绍一下磁控溅射真空镀膜机的主要用途:
(1)各种功能性薄膜:如具有吸收、透射、反射、折射、偏光等作用的薄膜。例如,低温沉积氮化硅减反射膜,以提高太阳能电池的光电转换效率。
(2)装饰领域的应用,如各种全反射膜及半透明膜等,如手机外壳,鼠标等。
(3)在微电子领域作为一种非热式镀膜技术,主要应用在化学气相沉积(CVD)或金属有机
(4)化学气相沉积(CVD)生长困难及不适用的材料薄膜沉积,而且可以获得非常均匀的薄膜。
(5)在光学领域:中频闭合场非平衡磁控溅射技术也已在光学薄膜(如增透膜)、低辐射玻璃和透明导电玻璃等方面得到应用。特别是透明导电玻璃目前广泛应用于平板显示器件、太阳能电池、微波与射频屏蔽装置与器件、传感器等。
(6)在机械加工行业中,表面功能膜、超硬膜,自润滑薄膜的表面沉积技术自问世以来得到长足发展,能有效的提高表面硬度、复合韧性、损性和抗高温化学稳定性能,从而大幅度地提高涂层产品的使用寿命。
磁控溅射除上述已被大量应用的领域,还在高温超导薄膜、铁电体薄膜、巨磁阻薄膜、薄膜发光材料、太阳能电池、记忆合金薄膜研究方面发挥重要作用
真空镀膜机磁控溅射主要工艺流程:
1、基片清洗,主要是用蒸汽清洗,随后用乙醇浸泡基片后烘干,以去除表面油污;
2、抽真空,真空须控制在2×104Pa以上,以保证薄膜的纯度;
3、加热,为了除去基片表面水分,提高膜与基片的结合力,需要对基片进行加热,温度一般选择在150℃~200℃之间;
4、Ar气分压,一般选择在0.01~1Pa范围内,以满足辉光放电的气压条件;
5、预溅射,预溅射是通过离子轰击以除去靶材表面氧化膜,以免影响薄膜质量;
6、溅射,Ar气电离后形成的正离子在正交的磁场和电场的作用下,高速轰击靶材,使溅射出的靶材粒子到达基片表面沉积成膜;
7、退火,薄膜与基片的热膨胀系数有差异,结合力小,退火时薄膜与基片原子相互扩散可以有效提高粘着力。
真空镀膜机磁控溅射镀膜的特点:薄膜纯度高,致密,厚度均匀可控制,工艺重复性比较好,附着力强。
依据溅射源的不同,真空镀膜机磁控溅射有直流和射频之分,两者的主要区别在于气体放电方式不同,真空镀膜机射频磁控溅射利用的是射频放电,陶瓷产品使用的是射频磁控溅射镀。
真空镀膜机光学镀膜加工上有什么要注意的吗
段时间有一个采购光学镀膜机的客户签订协议的时候,咨询我这个问题,真空镀膜机光学镀膜加工有没有什么需要注意的地方。在签订协议完成的后一个环节,我们的销售培训了大量的设备相关的操作知识和注意事项,客户也学到了不少相关的知识。今天至成真空小编也再次详细和大家讲解一下真空镀膜机光学镀膜加工上应该注意的事项,加强大家的设备方面的知识和技能。
真空镀膜机光学镀膜加工上有什么要注意的吗?当光线进入不同传递物质时(如由空气进入玻璃),大约有5%会被反射掉,在光学镜中有许多透镜和折射镜,整个加起来可以让入射光线损失达30%至40%。现代光学透镜通常都镀有单层或多层氟化镁的增透膜,单层增透膜可使反射减少至1.5%,多层增透膜则可让反射降低至0.25%,所以整个准镜如果加以适当镀膜,光线透穿率可达95%。镀了单层增透膜的镜片通常是蓝紫色或是红色,镀多层增透膜的镜片则呈淡绿色或暗紫色。
真空镀膜机增透膜增加透射光强度的实质是作为电磁波的光波在传播的过程中,在不同介质的分界面上,由于边界条件的不同,改变了其能量的分布。对于单层薄膜来说,当增透膜两边介质不同时,薄膜厚度为1/4波长的奇数倍且薄膜的折射率n=(n1*n2)^(1/2)时(分别是介质1、2的折射率),才可以使入射光全部透过介质。一般光学透镜都是在空气中使用,对于一般折射率在1.5左右的光学玻璃,为使单层膜达到的增透效果,可使n1=1.23,或接近1.23;还要使增透薄膜的厚度=(2k+1)倍四分之一个波长。单层膜只对某一特定波长的电磁波增透,为使在更大范围内和更多波长实现增透,人们利用镀多层膜来实现。
人们对增透膜的利用有了很多的经验,发现了不少可以作为增透膜的材料;同时也掌握了不少的镀膜技术,因此