计算了高压离心式风机叶轮进口直径与叶轮出口外径之比,即3258.0/20dd=从步开始,设计风机的比转速为15.5998。可以看出,所设计的风机是一种低比转速风机。得到了不同比转速下风机进出口外缘直径的比值范围。结果表明,所设计的风机满足风机的设计要求,可以继续后续的设计工作。考虑到后期改善高压离心式风机结构的便利性,叶轮与蜗壳分开啮合,并在相应的表面建
高压离心式风机

计算了高压离心式风机叶轮进口直径与叶轮出口外径之比,即3258.0/20dd=从步开始,设计风机的比转速为15.5998。可以看出,所设计的风机是一种低比转速风机。得到了不同比转速下风机进出口外缘直径的比值范围。结果表明,所设计的风机满足风机的设计要求,可以继续后续的设计工作。考虑到后期改善高压离心式风机结构的便利性,叶轮与蜗壳分开啮合,并在相应的表面建立接口进行数据交换。入口攻角是指入口角与叶片相对速度和圆周切线之间的差。它与圆周切线的夹角等于叶片入口角1aβ,因此攻角为零。当高压离心式风机流量小于设计流量时,经向速度mc1减小,入口相对速度与圆周切线方向的夹角小于叶片进口角1aβ,迎角为正。当流量大于设计流量时,子午线速度mc1增大,入口速度与圆周切线的夹角大于叶片入口角度1aβ,高压离心式风机迎角为负。前叶轮1Aβ值一般在40~60之间。由于适当增大了前风机的迎角和安装角,可以减小风机叶片通道的流量损失。因此,当迎角为6.04时,1aβ值为45。


高压离心式风机的矩形截面蜗壳成型时,蜗壳侧壁只需用钢板切断,在滚筒上滚动即可。加工制造方便。对于直接数值模拟方法,其优点是可以在不引入经验模型假设的情况下模拟流场中各尺寸的湍流波动,因此被称为精准的湍流波动。因此,选择离心风机常用的矩形截面蜗壳作为风机蜗壳截面的设计依据。介绍了蜗壳型线的设计方案。采用等循环法完成了蜗壳型线的设计,选择等边单元法进行了蜗壳型线的近似绘制。
高压离心式风机蜗壳外形参数的选择
蜗壳宽度的选择和蜗壳较佳宽度的选择并没有给出一种固定的计算方法。建议蜗壳B的宽度为叶轮出口宽度的2-5倍[52-54]。通过对方程的简化处理,高压离心式风机按照等边基元法和不等边基元法可以完成蜗壳型线的绘制。蜗壳的宽度也可通过公式确定。由式计算的蜗壳宽度为0.069m~0.099m,b值为0.72m,为风机叶轮出口宽度的6倍。通过对设计风机的建模和数值计算,当壳体厚度为叶轮出口宽度的6倍时,效率低,流量大,总压低。因此,根据高压离心式风机的数值计算和文献综述的结果,蜗壳宽度是叶轮出口宽度的4倍,即b为0.48m。

高压离心式风机的设计方法,对所设计风机的稳态计算结果进行了分析。在离心风机设计完成后,根据具体设计参数建立了离心风机的三维模型。第三章采用样机的数值计算方法,对设计工况下的风机进行了计算。大型离心风机性能预测方法,采用LSSVM算法和高压离心式风机历史运行数据建立性能预测模型,高压离心式风机采用LHS方法保证建模数据在建模区间内均匀分布,提高模型的通用性。原型风机和斜槽风机的比转速分别为13.89和11.08。根据不同的比转速,可对风机进行分类。可以看出,所设计的风机和原型风机属于不同的系列,但在全压、效率等方面都有所提高。可以证明第四节风机的设计方法是正确合理的。通过对设计高压离心式风机的数值计算参数与风机初始设计值的比较,可以看出设计风机的总压值高于设计目标,效率为68%,效率比原型风机高19.9%,总压值由4626提高到4626。PA至5257PA,均满足合作单位的性能要求。
可以看出,高压离心式风机样机长、短叶片的吸力面不仅产生分离现象,而且产生两个涡,设计工况下设计风机长、短叶片的吸力面存在一些分离现象,但没有明显的分离现象。(2)实验方法是利用的测量技术,建立离心风机在各种工况下的实验模型。产生了漩涡。通过比较两种方法的流线图可以看出,所设计的风机的整体流动性能得到了很大的提高,设计的高压离心式风机的效率得到了很大的提高。
设计风机的瞬态计算
为了后期计算风机内部的气动噪声,本文对离心风机内部流场采用瞬态的计算方法进行了数值计算。下面详细介绍风机的瞬态计算过程。
高压离心式风机瞬态计算收敛性判断
瞬态计算过程中,每一个时间步内相当于计算一个稳态过程。因此在每一个时间步内都需要保证计算达到收敛。结果表明,采用数值计算方法可以简单、准确地得到给定子午线分布的叶轮子午线轮廓。瞬态计算过程中存在内迭代的概念,内迭代与稳态求解的的迭代具有相同的原理。内迭代次数可以在模型树节点Run Calculation面板通过参数Max Iteration/Time Step来设置。

高压离心式风机模型训练完成后,将测试数据应用到所建立的模型中,验证模型的有效性。如果所建立的高压离心式风机模型满足建模的停止条件,则应用该模型。如果建立的模型