采用电主轴的高速加工技术是目前机床行业非常热门的一个话题。对于一台结构一定的机床,在主轴箱内油面高度固定不变的条件下,则各传动件的搅油功率损耗随转速的提高而增加。在高速切削机床中,由于主轴单元系统各零件刚度和精度都较高,而负荷却不是很大,主轴因切削力引起的加工误差较小。但内装式电动机的功率损耗发热和轴承的摩擦发热不可忽视,在高速加工中,电主轴的热变形已成为影响机床加工精度的主要
大型外圆磨床加工厂
采用电主轴的高速加工技术是目前机床行业非常热门的一个话题。对于一台结构一定的机床,在主轴箱内油面高度固定不变的条件下,则各传动件的搅油功率损耗随转速的提高而增加。在高速切削机床中,由于主轴单元系统各零件刚度和精度都较高,而负荷却不是很大,主轴因切削力引起的加工误差较小。但内装式电动机的功率损耗发热和轴承的摩擦发热不可忽视,在高速加工中,电主轴的热变形已成为影响机床加工精度的主要因素,机床热变形造成的加工误差达到工件总加工误差的60% ~ 80%。对高速电主轴的热态特性进行分析,以减小温升和热变形。对于高速机床来说,电主轴作为其核心部件,除需提高合理的刚度、精度外,另外需考虑电动机和主轴轴承的发热及动平衡精度,原有机床主轴的设计理论已经不适合高速主轴系统的设计,由此引起了高速主轴系统设计理念和理论的变化。主轴轴承高速下的剧烈摩擦发热和高频电动机发热会使主轴产生热变形,甚至引起主轴系统失效,大大阻碍了新技术的发展。因此,高速电主轴技术在高速机床研究和发展中具有重要的意义,电主轴系统发热分析及控制措施在高速主轴系统中至关重要,是高速、机床必须要考虑和解决的关键技术问题之一。
主轴套筒螺旋槽冷却剂热交换系统在加工中心中应用,应考虑以下内容: ①冷却剂的选择: 常用的冷却剂有制冷剂、水、油及油水混合物,因产品具体情况选取,其中水冷降热比高、价格低廉、维护方便,深受广大用户青睐; ②冷却液或油或油水混合物冷却时介质压力约0. 4 MPa 为宜,介质流量约50 L /min 为宜。而且,热变形直接改变了轴承的预紧状况,影响轴承的刚度特性和电主轴的加工精度,严重时,甚至导致轴承的热咬合,使电主轴毁坏。由于主轴电动机两端就是主轴轴承,电动机的发热会直接降低轴承的工作精度,如果主电动机的散热解决得不好,将会影响到机床工作的可靠性和稳定性。有限元分析表明,电主轴的定子和转子是电主轴的两大热源。另外,电动机高速运转条件下,有近1 /3 的电动机发热量是由电动机转子产生的,并且转子产生的绝大部分热量都通过转子与定子间的气隙传入定子中。
刀具的接口一定要明确,这也是有原则的,一般情况下BT50的接口转速只能在8000RPM一下的电主轴中使用,BT40的接口可以在18000RPM下的电主轴中使用,如果要更高的转速,刀具接口需要选择相应的HSK等高速刀具接口,数控铣削电主轴上配用的ER弹簧夹头或者SD弹簧夹头也是有一定的许用高转速的。随转速提高,dmN值达100×104以上时采用油气和油雾润滑,与脂润滑相比,温度上升小,能够以更高速度旋转,因而成为主要的润滑方法。第三点:磨用电主轴一般都是横扭矩设计的电机,电机的转速和功率以及电压的关系是等比关系,电压和功率随电主轴转速的增加线性增加。电流维持基本恒定不变,由于转矩和电流的关系是线性关系,所以称这种制式的电主轴为恒转矩制电机。
采用滑动轴承作支承时,主轴以其轴颈在轴承孔内旋转。高速电主轴是高速机床的核心部件,电主轴单元各零件的精度通常为μm级,如跳动一般为1~3μm,主轴刚度一般为100-300N/μm,因此,电主轴各零件自身的精度误差和变形量很小。对于车床类机床,在加工过程中,主轴的受力方向是一定的,主轴轴颈被切削力压向轴承孔表面的固定地方。这时主轴轴颈的不同部位和轴承孔内的某一固定部位相接触,所以轴颈的圆度误差会使主轴回转产生纯径向跳动,而轴承孔的形状误差对主轴回转精度的影响很小。对于镗床类机床,作用在主轴上的切削力是随镗刀的旋转而转动的,轴颈上的某一固定部位与轴承孔表面的不同部位相接触,因此轴承孔的圆度误差会引起镗床主轴的纯径向跳动,而镗床主轴轴颈形状误差对主轴回转精度的影响不大。
(作者: 来源:)