常规的或者是大家可以想象到的微孔加工的工艺有:冲压加工,冲压加工主要是针对孔径在1.0mm以上,材料厚度在0.5mm以下的产品,并且主要针对孔数比较少的工件,因为密集型的工件冲压模具是无法完成的。数控冲,数控冲是近几年比较流行的工艺,数控冲具有、成本低的优势,数控冲是需要更换相应的冲头即可操作,不需要模具。数控冲主要针对的是大孔径和低密度的工件,对于0.5mm以下的孔径工件数控
微孔加工厂
常规的或者是大家可以想象到的微孔加工的工艺有:冲压加工,冲压加工主要是针对孔径在1.0mm以上,材料厚度在0.5mm以下的产品,并且主要针对孔数比较少的工件,因为密集型的工件冲压模具是无法完成的。数控冲,数控冲是近几年比较流行的工艺,数控冲具有、成本低的优势,数控冲是需要更换相应的冲头即可操作,不需要模具。数控冲主要针对的是大孔径和低密度的工件,对于0.5mm以下的孔径工件数控冲基本就没有任何优势了。
鉴于上述原因,本试验采取第二种微小孔加工方法:加工好两块平板,将它们合紧后沿两板的接触面打骑缝孔,然后把两平板分开,直接测量暴露在外的微小孔内表面。采用这种方法测得的微小孔内壁的粗糙度能准确地反映微小孔内表面的实际加工情况。
钻孔时,两平板全长采用平口钳夹紧,以避免激光打孔时平板弯曲或受力不均匀。在激光打孔装置上设有放大倍数为57倍的显微放大装置,可以较清晰地观察两平板的接触面,故可较好的保证激光光束与平板接触面的相对位置并保证沿接触面打骑缝孔。平板接触面和加工工作台的垂直度可通过调整来保证。
微小孔的加工一直是机械制造中的一个难点,围绕这个问题研究人员进行了大量研究。目前可用于加工微小孔的方法有:机械加工、激光加工、电火花加工、超声加工、电子束加工及复合加工等[1]。有关各种方法可加工的微小孔直径范围已有较多的报道,而对于加工所得微小孔侧壁粗糙度的研究却比较少。随着科学技术的发展和尖i端产品的日益精密化、集成化和微型化,微小孔越来越广泛地应用于汽车、电子、光纤通讯和流体控制等领域,这些应用对微小孔的加工也提出了更高的要求。例如,熔融沉积原型机所用喷头是一个高i精度微小孔,不仅要求孔径大小准确,而且要求孔壁光滑,有利于熔体挤出以及挤出时微小孔流体阻力的准确控制。本文通过对可用于原型机喷头的微小孔侧壁粗糙度进行测量,进一步研究该微小孔粗糙度对熔融沉积原型机所用喷头工作质量的影响。本研究结果还可对纺丝、喷墨打印机等其他行业中类似微小孔表面粗糙度的研究提供参考。
抑制毛刺的产生:孔出口处的毛刺和交叉孔加工的毛刺均极难去除,必须对钻头形状加以更大改进和调整加工孔出口处的切削条件,才能有效抑制毛刺的产生。
开发减小钻头振动的夹持系统:钻头安装在机床主轴夹具上,应保证振摆精度在1μm以内。钻头直径越小,刚性越低,振摆失控将大幅度缩短工具寿命。因此,必须开发减振性能良好的夹具,将其与微型钻头相配合,以提高微孔加工的精度和延长工具寿命。
(作者: 来源:)