热板焊接时人们常犯的4个错误
1.不接触整个熔化肋(不正确的熔化零点)
为了有效地将热量传递到塑料部件中,熔体肋必须与加热的工具完全接触。使用nanoSTAKE,您可以获得生产高质量,完全成型桩的工艺,并且设置和操作简单安全。加热工具刚刚与焊接肋表面上的每个点接触的位置称为熔化零点。如果设定了不正确的熔体零位置,则预期焊接表面的一部分将不会吸收足够的热量以完全熔化和粘
振动焊设备咨询
热板焊接时人们常犯的4个错误
1.不接触整个熔化肋(不正确的熔化零点)
为了有效地将热量传递到塑料部件中,熔体肋必须与加热的工具完全接触。使用nanoSTAKE,您可以获得生产高质量,完全成型桩的工艺,并且设置和操作简单安全。加热工具刚刚与焊接肋表面上的每个点接触的位置称为熔化零点。如果设定了不正确的熔体零位置,则预期焊接表面的一部分将不会吸收足够的热量以完全熔化和粘合。这种情况导致我们称之为“冷焊”。为避免这种情况,进行熔体测试(仅熔化,无密封阶段),然后检查部件,确保整个熔体肋表面显示出与加热工具接触的迹象。如果熔化肋的部分没有显示熔化迹象,则调整熔体零位,直到它们为止。
2.熔体停留时间不足
为了形成强焊接,热量需要渗透到塑料焊接肋中以允许材料流动并与来自组件的另一半的软化材料结合。它们是人耳可以听到的频率,通常为20,000Hz或20kHz。通过编程的熔体停留时间控制该热深度。如果熔体停留时间太短,则热量不会深深地浸入焊缝中,并导致冷,弱焊接。相反,如果允许材料吸收过多的热量(通过长的熔化停留时间),则将难以施加足够的力来实现强焊接。
3.开放时间太长(转换)
一旦塑料部件被加热,工具将缩回,然后将两个部件合在一起以在力的作用下密封。有些组件可能非常小巧,如闪存驱动器和入耳式耳机,而可以超声波焊接的较大组件通常不超过6x8英寸。从部件离开加热工具到将它们放在一起的时间称为“打开时间”(或者,在某些情况下,“转换”)。尽可能减少开放时间至关重要。开放时间越长,部件上的半熔融焊肋就越需要冷却。如果焊缝冷却时间过长,它们会在其表面开始形成表皮,从而抑制两个部件上的半熔融材料混合并形成强焊缝。因此,热和密封阶段之间的过渡必须有效。
4.密封力不足
当两种组分在加热后聚集在一起时,施加到半熔融材料上的力使得来自两半的材料混合并焊接。你有多少次盯着塑料铆接机,想知道需要多长时间才能防止材料在缩回时粘在成型工具上。但是,如果施加的力不足,材料将不能充分混合,这会导致焊接不良。另一方面,如果施加太大的力,则所有半熔融材料将被挤出焊接区域,在每一侧仅留下冷材料,从而防止强烈的材料结合。
台州市锦亚机械制造有限公司是一家生产塑料线性振动摩擦焊接机,热铆焊接机,热板焊接机,多头非标型超声波塑料焊接机,以及非标准设备、自动化设备、治具等研发、设计、制造及销售为一体的技术服务性实体公司。

振动焊接工艺-您需要了解的内容
振动焊接步骤
振动焊接过程有四个主要步骤:
1)摩擦阶段
这两个部件由升降平台和振动器组件一起购买,然后相互水平振动。这会在接触点产生热量。
2)过渡阶段
两个接头相遇的塑料开始熔化,产生进一步的热量。熔化的层变厚并且粘度增加。当粘度达到临界阶段时,接头之间的摩擦力降低,导致热量减少。然后,系统的压力导致两个接头之间的熔化材料交换,形成无缝结合。
3)加入阶段
一旦连接受到影响,关闭振动器组件,为终的冷却阶段准备接头。当熔体速率变得等于熔化材料的向外流动时,就会发生这种情况,从而形成牢固且持久的粘合。
4)冷却阶段
对于焊接,两个接头必须在分子水平上熔化,因此冷却过程在一致的压力下进行,直到它完全固化。
通过控制焊接过程的力,振幅和穿透力,振动焊接使您可以在组件和材料方面实现的多功能性。它可用于粘合几乎任何热塑性塑料,包括不同的材料。它还可以成功应用于从非常小到非常大的部件,使振动焊接适用于各种项目。
材料对热塑性塑料焊接响应的影响
密度
这表明与基本类型相比,是否存在大量添加剂,例如玻璃纤维(GF),玻璃球(GG),石棉,滑石等,它们会影响焊接响应。在大多数情况下,这些添加剂会增加密度。
根据温度剪切模量G'和机械损耗因子Tanδ
从高G'或E剪切模量可以预期有利的焊接性能,该剪切模量在玻璃化转变温度下是恒定的。正确扭矩螺栓和配合表面,如附表中所示,显示了堆叠组件装配的正确扭矩值。在同一时间的机械损耗因数tanδ(衰减)应该低到玻璃化转变温度和尽可能恒定。硬质无定形塑料在室温下具有这些有利的性质。声波被传送到连接表面而没有太多损失并转换成热量。大多数增强材料增加了刚度,因此剪切模量也提高了。
在未填充的热塑性塑料的情况下,剪切模量也受到水分含量,结晶度和晶体取向以及自含应力的影响。在增强热塑性塑料的情况下,这些影响也是有效的。
直至玻璃化转变温度(Tg)或直至熔化区(Tm)的剪切模量曲线显着下降意味着机械损耗因子的增加并且在通向连接表面的途中导致声波明显衰减。在同一时间的机械损耗因数tanδ(衰减)应该低到玻璃化转变温度和尽可能恒定。通常,在半结晶塑料的情况下,能量损失大于硬质无定形塑料的情况。与由无定形塑料制成的那些相比,在半结晶塑料的情况下,相同形状的模制件通常需要更高的发电机功率输出或更长的焊接周期和更高的振幅。通常,希望具有较短的焊接周期。
熔化热量或热量和特定热量Cp
该值越高,特别是在玻璃化转变温度或熔化范围内,在连接区域中塑化材料所需的能量越大。这意味着更长的焊接周期或必要时更强大的超声波焊接装置,后者是优选的。
熔化范围或热塑性范围
必须通过选择合适的焊接参数来保证连接区域的加热超过熔化范围。
声速
合成材料中的声速是温度控制的,并且在模制件用作声导体时是重要的,例如在远场焊接中。
熔体粘度
塑料熔体的粘度(例如,由MFI,熔体流动指数表示)影响焊接响应。
以低MFI为特征的高分子粘性塑料通常需要更多的能量来熔化。这意味着更长的焊接周期或者超声波焊接设备的更高功率输出是必要的。
具有低熔体粘度的塑料,其特征在于高MFI,熔化更快。在这种情况下,熔融材料会突然离开连接区域。为避免这种情况,焊接压力,焊接周期,振幅,触发和连接区域的设计应特别小心。
大多数增强和填充材料增加了熔体粘度,即熔融材料更粘稠。少量的一些填料,例如云母和滑石,降低了熔体粘度,熔融材料更易移动并且流动更快。
增强材料,填充材料和其他添加剂
增强材料:
玻璃纤维,玻璃球,碳纤维,滑石,石棉等。
填充材料:
木粉,白垩和其他矿物和有机填充材料。
其他添加剂
稳定剂,润滑剂,染料,软化剂,阻燃添加剂,抗静电涂料等
。这些添加剂的性质和数量会影响焊接响应和焊接效果。应相应调整模制件的结构和焊接条件。
高周波同步熔断机主要适用对象
高周波同步熔断机主要适用对象
一、APET、PETG、GAG等环保材料的双面吸塑泡壳的热合、切边;
二、同时熔断纸板和吸塑(如牙刷吸塑包装);
三、汽车遮阳板、皮革类手表带、鞋类配件等的热合及切断;
四、人造皮革的压花及切边;
五、APET、PETG、GAG等