针对螺旋输送机因绞龙叶片长螺旋弯曲而造成的不规则噪声,对螺旋输送机系统和制造工艺系统改进设计,解决了上述问题,噪声明显降低,完全满足了使用要求.
一、螺旋输送机属一般机械设备,由于其长度太长,绞龙叶片螺旋轴挠曲度很大,发生弯曲现象,在使用过程中极易发生螺旋叶片外圆与壳体内孔碰撞磨损.
螺旋轴越长其挠曲度越大,也即弯曲越大,长螺旋轴弯曲问题是螺旋输送机设备普遍存在的一个共性问
不规则叶片定做
针对螺旋输送机因绞龙叶片长螺旋弯曲而造成的不规则噪声,对螺旋输送机系统和制造工艺系统改进设计,解决了上述问题,噪声明显降低,完全满足了使用要求.
一、螺旋输送机属一般机械设备,由于其长度太长,绞龙叶片螺旋轴挠曲度很大,发生弯曲现象,在使用过程中极易发生螺旋叶片外圆与壳体内孔碰撞磨损.
螺旋轴越长其挠曲度越大,也即弯曲越大,长螺旋轴弯曲问题是螺旋输送机设备普遍存在的一个共性问题,由于采用两端轴承支承结构,必然带来弯曲问题,原因很简单,从材料力学方面分析,长螺旋轴是简支梁布置形式,缺点是中间部位挠曲度太大,致使中间部位弯曲很大,绞龙叶片外圆与壳体内孔极易产生相互碰撞现象,发出强大噪声,严重者可导致电动机憋停,甚至造成电动机线圈烧毁等现象.
根据实践经验,采取了如下措施,一般制作进螺旋叶片外圆与壳体内孔之间留有间隙10mm,采用偏心结构设计,螺旋输送机螺旋轴回转中心线与壳体回转中心线偏心8mm,巧妙地解决了螺旋轴弯曲带来的碰撞和噪声等问题,把螺旋输送机螺旋轴回转中心线上移8mm,虽然螺旋轴中间部位挠曲度很大,但是两差距处挠曲度很小,使中间部位与壳体下问间隙加大,螺旋轴向下弯曲,因为加大了间隙,所以减少了绞龙叶片外圆与壳体内孔相碰的机会,解决了弯曲造成的噪声问题.
二、改进螺旋轴加工制造工艺,因为头轴、尾轴、中间管轴分开加工、组焊后各件同心度验证以保证,以后再焊接绞龙叶片后又产生了弯曲变形,其变形难以控制,焊接时螺旋轴局部高温又冷却,相当于局部回火热处理,改变了此局部力学性能.
1、采用工装设计,车削采用一夹、一支承和一辅助支承的过定位装夹方法,头轴部分采用四爪卡盘装夹,床身尾部处用中心架支承,在床身的外延伸部分采用专门托辊工装支承,托辊工装支承作为辅助支承来增加工艺系统的刚性.
2、车削过程,螺旋轴轴头部分在车削前要求其精加工处留加工余量10mm,轴头处留有80mm长的工艺卡差距便于装夹,尾轴端的管轴上车出宽80mm光面外圆,供中心架支承用.按照机械加工工艺车削头轴部分,完成对头轴部分的精加工,用锯床锯去头轴处工艺卡头即可,在铣床上加工键槽,完成全部加工,制作出合格工件.
螺旋轴焊接叶片时,采用双人双侧同步接技术,保证其变形量双侧相同,相互抵消,用此方式控制并减少了变形量,巧妙地解决了制造工艺带来的长螺旋轴弯曲问题.

螺旋叶片的转速对输送量有较大的影响.一般说来,螺旋叶片转速加快,输送机的生产能力提高,过小则输送机的输送量下
降.但螺旋叶片的转速也不宜过高,因为当转速超过一定的极限值时,物料会因为离心力过大而向外抛,以致无法输送.所
以还需要对转速n进行一定的限定,不能超过某一极限值.
为了保证物料能比较平稳地输送,不至被螺旋抛起来,根据实验螺旋叶片的极限转速为式中D为螺旋直径,为物料特性
系数查表可得生料的物料特性系数为35 .由以上计算可得D=0.1m
代入1式求的螺旋转速
N=110转/分
按螺旋输送机转速系列20,30,35,45,60,75,90,120,150,190 因此圆整取标准系列值
N=120转/分
以上即是确定螺旋叶片转速的计算方法,希望可以为您带去帮助.
为解决工艺调整难度,本文拟通过用数学和力学模型理论预测空间调试参数,用有限元模拟成型规律的方法确定控制螺旋
叶片冷轧机形态的主要参数,总结摩擦系数、轧制材料、轧制速度等因素对叶片形态的影响趋势,总结形成参数变化与冷
轧结果变化规律,从而运用于指导实际生产。
通过对轧制形成过程的计算机模拟,可以更好的理解轧制成机理,可以建立加工的数据参数库,为实现金属带料的精que轧
制成形奠定基础,为选择合理的参数和加载方式提供依据,使的轧制形成这一新的工艺能够尽快的应用到生产实践中去,
并能节约大量的试验钢材,产生巨大的经济效益。
(作者: 来源:)