氮化
操作方法:利用在5..~600度时氨气分解出来的活性氮原子,使钢件表面被氮饱和,形成氮化层。
目的:提高钢件表面的硬度、性、疲劳强度以及抗蚀能力。
应用要点:多用于含有铝、铬、钼等合金元素的中碳合金结构钢,以及碳钢和铸铁,一般氮化层深度为0.025~0.8mm
淬火工件的硬度影响了淬火的效果。淬火工件一般采用洛氏硬度计测定其HRC值。淬
铸铁件热处理加工
氮化
操作方法:利用在5..~600度时氨气分解出来的活性氮原子,使钢件表面被氮饱和,形成氮化层。
目的:提高钢件表面的硬度、性、疲劳强度以及抗蚀能力。
应用要点:多用于含有铝、铬、钼等合金元素的中碳合金结构钢,以及碳钢和铸铁,一般氮化层深度为0.025~0.8mm
淬火工件的硬度影响了淬火的效果。淬火工件一般采用洛氏硬度计测定其HRC值。淬火的薄硬钢板和表面淬火工件可测定HRA值,而厚度小于0.8mm的淬火钢板、浅层表面淬火工件和直径小于5mm的淬火钢棒,可改用表面洛氏硬度计测定其HRN值。
铝合金工件加热后的冷却时间必须很短,一避免在固熔处理前工件局部或整
体温度下降。
工件从出炉到进入固熔处理槽的间隔时间要严格控制,
延迟时间过
长将导致工件温度下降,
发生部分固熔体分解,
析出粗大疏松相,
产生组织偏析,
从而降低时效强化效果。
[6]
固溶热处理加热时间首先与合金性质、原始状态有关。因各种铝合金的成分
相似所以对此不需特殊考虑
,
那么重点考虑的就是原始组织状态。
当强化相比较
细时
因固溶较快
加热时间可缩短。例如冷轧状态的板材所需加热时间较热轧状态的短
重复淬火则更短
而一般退火状态因强化相较粗
保温时间应较长。
另外
加热时间和加热介质、零件尺寸、量等因素也有直接关系。


原理/高频淬火 编辑将工件放在用空心铜管绕成的感应器内,通入中频或高频交流电后,在工件表面形成同频率的的感应电流,将零件表面或局部迅速加热(几秒钟内即可升温800~1000℃,心部仍接近室温)若干秒钟后迅速立即喷(浸)水冷却(或喷浸油冷却)完成浸火工作,使工件表面或局部达到相应的硬度要求。而用油作淬火介质只适用于过冷奥氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火。
比较/高频淬火 编辑与普通加热淬火比较具有: 1、加热速度极快,可扩大A体转变温度范围,缩短转变时间。 2、淬火后工件表层可得到极细的隐晶马氏体,硬度稍高(2~3HRC)。脆性较低及较高疲劳强度。
3、经该工艺处理的工件不易氧化脱碳,甚至有些工件处理后可直接装配使用。
4、淬硬层深,易于控制操作,易于实现机械化,自动化。
5、火焰表面加热淬火

(作者: 来源:)