石墨模具提升技术的几处要点介绍
石墨模具激光表面强化技术是指在数控环境下,利用高能量密度的激光束和涂料或熔覆材料对石墨模具或模具表面进行处理,改变其表层的组织或成分,实现表面相变强化或增强性修复的技术。
所谓激光相变强化,是用激光束扫描工件,使工件表层升温到ac3临界点以上,受热层在光斑移开时,由于工件基体的热传导作用使温度舜间进入马氏体区或贝
石材石墨模具
石墨模具提升技术的几处要点介绍
石墨模具激光表面强化技术是指在数控环境下,利用高能量密度的激光束和涂料或熔覆材料对石墨模具或模具表面进行处理,改变其表层的组织或成分,实现表面相变强化或增强性修复的技术。
所谓激光相变强化,是用激光束扫描工件,使工件表层升温到ac3临界点以上,受热层在光斑移开时,由于工件基体的热传导作用使温度舜间进入马氏体区或贝氏体区,发生马氏体相变或贝氏体相变,完成相变强化过程。
相变强化工艺具有表面质量好的优点,可根据不同材质、工件热容量大小、以及激光处理工艺参数的不同,实现硬度、强化层深度可控。在传统热处理工艺中影响强化效果的技术因素,在激光相变强化中所起的作用发生了很大变化。
如何辨别石墨的优劣?
材料的平均颗粒直径
材料的平均颗粒直径直接影响到材料放电的状况。材料的平均颗粒越小,材料的放电越均匀,放电的状况越稳定,表面质量越好。
对于表面、精度要求不高的锻造、压铸模具,通常推荐使用颗粒较粗的材料,如ISEM-3等;对于表面、精度要求较高的电子模具,推荐使用平均粒径在4μm以下的材料,以确保被加工模具的精度、表面光洁度。所以说灰分只是个参考数据,与实际杂质含量有一定差距,且差距水平与石墨中各元素含量有关。材料的平均颗粒越小,材料的损耗情况就越小,各离子团之间的作用力就越大。比如:通常推荐在精密压铸模具、锻造模具方面,ISEM-7已足以满足要求;但客户对于精度要求特别高时,推荐使用TTK-50或ISO-63材料,以确保更小的材料损耗,从而保证模具的精度和表面粗糙度。
同时,颗粒越大,放电的速度就越快,粗加工的损耗越小。主要是放电过程的电流强度不同,导致放电的能量大小不一。但放电后的表面光洁度也随着颗粒的变化而变化。
石墨材料可作润滑材料:石墨在机械工业中常作为润滑剂。润滑油往往不能在高速、高温、高压的条件下使用,而石墨材料可以在200~2000 ℃温度中在很高的滑动速度下,不用润滑油工作。
石墨材料可作铸造、翻砂、压模及高温冶金材料:由于石墨的热膨胀系数小,而且能耐急冷急热的变化,可作为玻璃器的铸模,使用石墨后黑色金属得到铸件尺寸精*,表面光洁成品率高,不经加工或稍作加工就可使用,因而节省了大量金属。

石墨模具主要在以下几个方面得到了广泛的应用:
烧结模及其它
利用人造石墨材料热变形小的特点,可制造晶体管的烧结模具和支架,现已广泛使用,它已成为发展半导体工业不可缺少的材料。石墨在生产生活中是非常常见的一种黑色非金属原料,密度比较低还拥有着耐高温性、导电导热性、润滑性、化学稳定性、可塑性、抗热震性等等优性质。此外,石墨模具也使用于铸铁用的铸型,各种有色金属用的耐久性铸模,铸钢用铸型,耐热金属(钛,锆,钼等)用的铸型及焊钢轨用的铝热焊型的铸型等。
(作者: 来源:)