常用的车牌定位的方法有基于颜色的方法、基于纹理特征的方法、基于数学形态学的方法、基于小波变换的方法等。这些车牌定位方法,都各自具有不同的局限性。使用Mean Shift算法进行车牌定位可以获得比较好的效果。对于图像空间的所有像素点,在经过Mean Shift算法迭代后,如果终收敛于同一点,则停止迭代。用同样的方法对图像空间中的所有像素点进行迭代遍历,得出的结果根据收敛点的不同可
车牌识别对接系统
常用的车牌定位的方法有基于颜色的方法、基于纹理特征的方法、基于数学形态学的方法、基于小波变换的方法等。这些车牌定位方法,都各自具有不同的局限性。使用Mean Shift算法进行车牌定位可以获得比较好的效果。对于图像空间的所有像素点,在经过Mean Shift算法迭代后,如果终收敛于同一点,则停止迭代。用同样的方法对图像空间中的所有像素点进行迭代遍历,得出的结果根据收敛点的不同可以把整个空间分成几个区域。然后,就是车牌识别的后台管理,车牌识别系统的后台管理体系,决定了这个车牌识别系统是否好用。这些区域即为可能的车牌区域,再通过上述特征在可能的车牌区域中进行对照分析,就可以得到车牌区域。
车牌校正
车牌校正是为了解决拍摄的车牌图像因为角度问题,导致定位后的车牌倾斜,而倾斜的车牌会给车牌识别系统的后继步骤增添麻烦,车牌校正是必须的。车牌校正是利用车牌区域的矩形序列分布同组成车牌号的字母、数字位置的分布基本一致的特征,找到了矩形序列中矩形左上角像素点排列的近似斜率,从而找出车牌区域的偏转角度,完成车牌图像区域的校正。由此看来该课题研究的内容发展空间很广泛,它的速度与方便性是人工汽车牌照识别远远达不到的,这对交通发展领域有深远的影响。
字符的分割,每个字符的分割位置都需要通过相关的投影信息来确定位置。字符的识别是将字符进行分类,把汉字、数字字母及数字输入不同的网络进行训练测试。车牌识别设备有车牌识别摄像镜头和车牌识别控制器,车牌识别控制器与测量仪连接,利于图像数据的识别、交换;车牌识别摄像机主要完成被测车辆号牌自动识别比对,同时联网从数据库中调阅机动车的信息。其中,车牌字符分割模块、车牌定位模块、字符分割模块,这三大模块是该课题重点研究的内容。
(作者: 来源:)