采样的时间间隔 Δt 决定着采样的质量和数据处理的总时间。Δt 太小,会使x(nΔt)的数目剧增,增加了数据处理的工作量,并要求计算机的容量要大;但Δt 太大,会在原始数据中引起低频和高频分量的混淆,不能真实反映原信号x(t)的全部情况,影响分析的精度。LMS SCADSⅢ316每通道有独立的16bitA/D,有DSP 功能,采样频率为200Ks/s,通过SCSI 接口
叶片振动测量
采样的时间间隔 Δt 决定着采样的质量和数据处理的总时间。Δt 太小,会使x(nΔt)的数目剧增,增加了数据处理的工作量,并要求计算机的容量要大;但Δt 太大,会在原始数据中引起低频和高频分量的混淆,不能真实反映原信号x(t)的全部情况,影响分析的精度。LMS SCADSⅢ316每通道有独立的16bitA/D,有DSP 功能,采样频率为200Ks/s,通过SCSI 接口直接传送到硬盘。在旋转状态下叶片承受很大的离心力,增加了刚度,因此,一般情况下叶片的动频率高于其”频率,式中几为工作条件下的动频率。特别适合高速、大容量数据采集。
航空发动机叶片动频和动应力测量的主要特点是在高速旋转下的测量。高速旋转下测量一方面对传感器(如应变片)的安装和防护,对连接电缆的安装、焊接和防护等均提出了一些特殊的要求;、A、型是危险的,一般情况下,都必须调开共振,只有当叶片的蒸汽弯应力较小时才允许在共振下运行。另一方面对信号传递装置(如引电器等)要求也较为苛刻;此外,由于航空发动机的整机振动激振源复杂,再加上噪声,因此对其振动信号的分析处理需要采用多种方法进行反复研究比较,方可获得比较理想的测试结果。
叶片振动测量系统(BVMS)用于非接触式高速旋转叶片振动、应变、裂纹等在线状态检测。基于叶尖定时原理,传感器安装于静止机匣上,感受叶片扫过的信号,经信调模块、采集模块及软件算法处理后可还原叶片的实时振动位移、频率、振幅等信息,为转子叶片振动特性验证、动应力安全监控、叶片疲劳和故障诊断提供直接有效数据。以航空发动机为例,据统计振动故障率占发动机中总故障率的60%以上,而叶片振动故障率又占振动故障率的70%以上。基于叶尖定时方法无需进行叶片改装,且能同时测量所有叶片的状态信息,具有较大的技术优势。
利用有限元方法分析了某径流式涡轮增压器叶片的振动特性,得出了叶片的各阶自振频率及相应振型,计算结果与实验结果较为吻合。分别对压气机和涡轮叶片进行了共振特性分析,在此基础上进行了压气机和涡轮叶片的共振相干分析,得出了在该增压器设定工作转速下,叶片发生共振的概率,并评估了叶片的工作可靠性。对电厂运行机组而言,由于叶片安装条件和连接条件在运行过程中可能发生变化,因此确切地了解这些变化对叶片振动特性的影响对保证机组的安全运行有重要意义。
我国沿岸很多地方风能资源丰富, 风能发展潜力巨大,具备很好的开发前景,通过在这些地点建立风电机组可以充分利用这些能源,创造巨大的经济价值。风电机组控制系统是整个发电机组的核心,直接影响着整个发电系统的性能。其次,对速度信号进行再积分,掌握风机叶片的振动位移s,进而对风机叶片振动幅度进行有效掌握。由于风电机组叶片受到阵风推力产生的轴向方向上的载荷巨大,风速的微小变化就会引起轴向力较大的变化。
(作者: 来源:)