烘箱循环风机是叶片式流动机械,其产生的噪声包括空气动力性噪声、气固耦合噪声、机械噪声、电磁噪声,其中空气动力性噪声是大风量轴流风机的主要噪声。空气动力性噪声是叶片旋转引起空气振动产生的。烘箱循环风机旋转噪声和涡流噪声是两种不同的气动噪声。旋转噪声是当大风量轴流风机叶片旋转推动空气流动时,均匀分布的叶片与周围空气相互作用,引起气体压力脉冲而产生离散噪声;旋
烘箱循环风机
烘箱循环风机是叶片式流动机械,其产生的噪声包括空气动力性噪声、气固耦合噪声、机械噪声、电磁噪声,其中空气动力性噪声是大风量轴流风机的主要噪声。空气动力性噪声是叶片旋转引起空气振动产生的。烘箱循环风机旋转噪声和涡流噪声是两种不同的气动噪声。旋转噪声是当大风量轴流风机叶片旋转推动空气流动时,均匀分布的叶片与周围空气相互作用,引起气体压力脉冲而产生离散噪声;旋涡噪声是叶片表面上的气流形成紊流附面层后,随着压力的增加,从叶片上旋涡脱离,引起脉动产生的宽频噪声。由于煤矿工作的性质,风机必须始终处于高效运行状态,以保证井下有足够的新鲜空气。
烘箱循环风机噪声单频的噪声较大值存在于低频阶段,且噪声在2500Hz 以后噪声频谱没有明显波动。有研究表明,100Hz 以下的噪声,大气吸收作用微弱,在10km 的传播范围内,噪声几乎不衰减;400Hz 的噪声在大气相对湿度为50%,温度为293K 情况下,5km 的传播范围衰减3dB。由此可见,低频噪声随传播距离的变化不大。本公司采用多功能数字环境噪声分析仪对某项目上大风量轴流风机声压级进行测量,结果可知,烘箱循环风机的等效连续A声级约为87dB(A),并且噪声在63Hz单频时峰值达98dB(A),在125Hz单频时噪声峰值达96dB(A)。
本公司采用多功能数字环境噪声分析仪对某项目上大风量轴流风机声压级进行测量,结果可知,烘箱循环风机的等效连续A 声级约为87dB(A),并且噪声在63Hz 单频时峰值达98dB(A),在125Hz 单频时噪声峰值达96dB(A)。该结果证实了轴流风机单频噪声较大值在低频段,主要噪声为低频噪声。当叶片穿孔时,部分叶片工作面气流流向非工作面,非工作面气流获得更多动能,克服叶片表面的摩擦,抑制涡流的产生和脱落。
本文根据已经完成的一种基于欧拉方程外加源项的模型来计算预测大小动叶可调烘箱循环风机的气动性能,主要采用损失和落后角模型用来考虑叶片排和摩擦对气流的影响,并用堵塞因子修正环壁附面层堵塞影响。根据在风机安装角未发生改变时的实验性能,优化模型中的损失系数和落后角系数使得计算结果和实验计算相近。改变动叶可调风机的安装角后,本模型预测得到的该风机在安装角变化( + 10°,+ 5°,- 5°,- 10°) 的性能曲线与实验结果误差小于2%。烘箱循环风机采用优化后的损失和落后角模型,对该风机的5条特性线进行数值模拟,结果如图5所示。结果表明烘箱循环风机模型使用经过优化后的损失和落后角模型能准确地预测出该动叶可调轴流风机在全工况下的气动性能。
在实际的烘箱循环风机叶轮机械中,气体的流动是一种十分复杂的、非定常的、全三维的流动。为了提高程序的计算速度,需要做出如下假设: 气体为完全气体; 流场为轴对称; 不考虑径向变化,流场沿叶片中弧线。
在轴流风机的数值计算中,本文采用Stratford 的模型对环壁边界层进行模拟。环壁边界层会沿壁面产生位移厚度,该模型假设位移厚度是沿着叶片排连续分布的,同时端壁边界层和叶尖间隙漏流发生的总压损失也包含在三维总压修正系数3D中,该模型能够计算得出比较合理的堵塞因子。通过建立多个试验点,尽可能反映壳体的形状,在壳体的进口、叶轮和出口处设置48个圆周试验点,选择靠近壳体中间位置的点作为锤击点。
烘箱循环风机优化思路
本模型采用Nelder - Mead 的优化方法,用于非线性方程针对多目标的优化方法,能寻找到全局较小偏差,同时根据自变量的增加而线性增加计算负荷的大小。由于自变量的变化参数较多,为了避免出现非物理的优化结果,提高优化效率。通常,在测量水平、垂直和轴向位置的较大振动位置时,应考虑到振动源。本模型的优化将分为两个部分。
烘箱循环风机设计点的模型优化
在设计点,风机内部流场状况较好,流动损失小,。因为Koch & Smith 的模型考虑了诸多物理因素并被广泛验证了其合理性,因此不予优化。有3 个参数需要优化: 参考冲角、参考落后角和二次流损失。在一维计算时,由于模型中的经验公式是从大量压气机的实验数据中提取出来的,针对某一特定的风机几何尺寸,首先需要对采用的损失和落后角模型进行校验和标定。标定是根据风机在转速990r /min 时,烘箱循环风机的安装角不变情况下的实验气动性能曲线。烘箱循环风机叶轮位置处的声功率级较大,第二叶轮旋转方向与叶轮加速气流的夹角较大,冲击较大。其次,利用优化得到的损失和落后角模型,对安装角分别为+ 10°、+ 5°、- 10°、- 5°的轴流风机的气动性能进行数值模拟并与实验结果进行对比分析,来验证本模型的准确性和可靠性。因为本风机并未给定相关设计点的参数,烘箱循环风机模型中只能选取设计转速为990r /min 下率点为设计点,选取实验的气动性能曲线做为优化对象。



烘箱循环风机叶片穿孔抑制了两级叶轮叶尖排流和非工作面涡流的产生和脱落,降低了该位置的声功率级。
穿孔后,改善了烘箱循环风机叶片周围的流场,降低了两级叶片通过频率的声压级,相应地降低了旋转噪声。
烘箱循环风机叶片穿孔后,整个频率范围内的A声级有不同程度的下降,中低频段的下降幅度较大,而高频段的下降幅度较小。穿孔后,宽带噪声成为主要噪声源。风扇式轴流风机在粮食通风冷却中的节能效果。
采用轴流风机对储粮进行降温实验