1、涡街流量计与孔板流量计目前的技术水平
涡街流量主的基本结构由涡街发生体、检测元件、信号处理放大电路组成,目前对于涡街发生体的研究已达到相当完善的程度,以三角型发生体为比较佳型体,检测元件有热敏电阻、应变片、压电晶体、差动电容、超声波等。信号处理部分有许多已微机化。涡街流量计具有安装方便(可直接在管道上安装)、体积小、互换性强、长期运行精度高,可适用于大多数液体、气
涡街流量计厂商
1、涡街流量计与孔板流量计目前的技术水平
涡街流量主的基本结构由涡街发生体、检测元件、信号处理放大电路组成,目前对于涡街发生体的研究已达到相当完善的程度,以三角型发生体为比较佳型体,检测元件有热敏电阻、应变片、压电晶体、差动电容、超声波等。信号处理部分有许多已微机化。涡街流量计具有安装方便(可直接在管道上安装)、体积小、互换性强、长期运行精度高,可适用于大多数液体、气体和蒸气测量。这一分类方法是目前制造厂商和用户都比较习惯的分类方式,从名称上就可以体现出涡街流量计的不同特点。目前世界市场涡街流量计的销售额每年递增30%左右。
孔板节流装置由于结构简单,造价低、可*等优点,它几乎适用于所有介质测量,而与之配套的差压变送器发展迅速,使其本身具有的不足得以弥补。
2、涡街流量计与孔板流量计综合性能评价
孔板流量计(简称孔板)由节流件取压装置和差压变送器组成,导压管对于易冻的场所需要有伴热措施,一个流量测量回路静密封点为20个左右,使用中存在如下问题:
易冻、易堵、易漏、伴热容易造成差压变送器器件老化、某些场合导压管需加隔离液,由于伴热或工艺操作不稳,正、负导压管隔离液液线常常不等,产生液柱差,使流量指示不准。
涡街流量计主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响;无可动机械零件,因此可靠性高,维护量小;仪表参数能长期稳定。涡街流量计采用压电应力式传感器,可靠性高,可在-20℃~+350℃的工作温度范围内工作,有模拟标准信号,也有数字脉冲信号输出,容易与计算机等数字系统配套使用,是一种比较、理想的流量仪表。(3)与差压式、浮子式流量计比较,准确度较高,一般可达±1%R左右。
工作原理
在流体中设置非流线型旋涡发生体(阻流体),则从旋涡发生体两侧交替地产生两列有规则的旋涡,这种旋涡称为卡曼涡街。
我们从行业调研的整体情况看,只有扎实做好下一代产品技术储备,及时调整产品结构,转换成果,才能在不断变化的市场环境中占据主动,使库房涡街流量计生产企业持续发展。已成为大部分行业企业的共识。国内一部分流量仪表工厂主动加大科技投入和库房涡街流量计产品开发力度,研究市场需求,调整库房涡街流量计产品结构,面对用户需求升级,开拓国内、国际市场,是行业的主流趋势。国内流量仪表的涡街流量计生产企业自主产品产业化和市场推广进程加快,开发了一批高速、精密、复合的高1端机床产品。可广泛用于大、中、小型各种管道给排水、工业循环、污水处理,油类及化学试剂以及压缩空气、饱和及过热蒸汽、天然气及各种介质流量的计量。从调研的50家企业报表中新开发库房涡街流量计产品的销售情况看,近5年来企业在库房涡街流量计产品结构调整方面取得的主要突破和代表性成果部分典型企业的典型产品,我国仪器仪表行业经过近10年的发展,取得了令人瞩目的成就。虽然在很多方面还存在着诸多的深层次问题有待解决,但经过近几年的产品结构调整,仪器仪表行业在库房涡街流量计产业规模、技术水平、产品品种等方面已经有了较快的进步。
涡街流量计仪表常数与流体流速的关系及分段补
涡街流量计仪表常数与流体流速的关系及分段补偿,通过对涡街流量计的仪表常数随着流速的变化而略有起伏这个规律的观察与总结,建立数学模型,并根据这个数学模型,可以在不同的流速段对仪表常数做适当的补偿,可以提高涡街流量计的计算精度,该方案通过单片机809C51实现。安装仪表时应注意以下几点:一、安装应符合仪表使用说明书的要求,保证涡街流量传感器上、下游直管段的长度。
根据多年的应用经验以及大量的现场数据,我们发现涡街流量计的仪表常数与流体的流速存在一定的关系,本文通过寻找涡街流量计仪表常数与流体流速的关系,建立了两者的数学模型,在流量计算时对它进行补偿,提高了计算精度。
1.1 涡街流量计的工作原理
涡街流量计是基于卡门涡街原理制成的一种流体振荡性流量计,即在流动的流体中放置一个非流线型的对称形状的物体(涡街流量传感器中称之为漩涡发生体),就会在其下流两侧产生两列有规律的漩涡,即卡门涡街其漩涡频率正比于流体速度:
1.2 涡街流量计的特点
(1)输出的信号是与流速成正比的脉冲信号,便于数据处理和计算机联网。
(2)量程范围宽,精度高。
(3)无可动部件,可靠性较高,结构简单,便于安装维修。
(4)检测元件与被测介质不直接接触,不受流体的化学性质影响,应用范围宽,寿命长。
(5)抗干扰能力强,容易进行流量计算,不受流体物理性质的影响,给仪表的标定和使用带来了方便。
2 误差的产生及补偿
2.1 非线性误差的产生
由于涡街传感器所测的并不是平均流速,而是漩涡发生体两侧的流速。对于湍流状态,不同的雷诺数下,流速分布规律是不同的,即不同的流速下具有不同的流速分布,进而说明了涡街流量传感器检测到的主要反映漩涡发生体两侧的流速,与管道平均流速的关系不是确定的。这说明涡街流量传感器的非线性误差是其检测机理所决定的。随着工业的发展,科技的进步,工厂蒸汽买进、卖出,装船装进、装出,希望采用能测双向流的流量计,一根导线、一套仪表解决问题。在实际使用时,先绘出传感器的仪表常数与流体流速的试验曲线,据此得到不同流速段的实际仪表常数。本文应用MCS251单片机系列的89C51将试验曲线事先固化于流量计的EPROM中,用户结合现场具体工作情况通过键盘输入平均仪表常数KP的值(KP= (Kmax+Kmin) /2),实现了涡街传感器的非线性修正。
2.2 仪表常数与流体流速的关系及分段补偿
我们知道涡街流量计频率与流量成正比,理论上讲,涡街流量计输出频率与流速成正比,也就是说仪表常数恒定。实际上,由于流量计本身的因素导致两者之间存在一定程度的非线性误差。鉴此,我们做出了一条仪表常数与流速的实验关系曲线,如图1所示。3、由于焦炉煤气多杂质,易结晶,杂质凝结于传感头,从而造成计量失准。图中各点坐标分别为A(Vmin,1.004 9KP),B(15%Vmax,0.997KP),C(30%Vmax,0.992853KP),D(50%Vmax,0.994883KP),E(75%Vmax,KP),F(Vmax,KP)。
针对这种误差规律,我们采取分段补偿的方式进行误差修正。由图1可以看出,随着流速的降低,曲线偏离平均值越大,对此我们采用的方法可以达到两个目的:
(1)无论偏差值多大,只要它有规律可循,就可补偿修正,还可以把流量的下限即Vmin在坐标上向左移动,即扩大传感器的量程。
(2)根据精度要求合理划分区间,在误差大的低流速区间线段取密一些,在误差小的高流速区间可适当将区间放宽。
为了满足修正后非线性误差在0. 3%以下的要求,我们根据理论分析和曲线规律,分别在12%Vmax、60%Vmax处增加两点(见图2),坐标分别为G(12%Vmax,KP),H(60%Vmax,0.998KP)。理由:
①Vmin/Vmax=8% ~9%;②DE曲线间无拐点且下凹;③AB曲线间无拐点且下凹。这样,把整个流速范围分成了六段,如表1。这样处理后,可修正非线性误差在0.3%