人脸识别技术这些年已经发生了重大的变化。传统方法依赖于人工设计的特征(比如边和纹理描述量)与机器学习技术(比如主成分分析、线性判别分析或支持向量机)的组合。人工设计在无约束环境中对不同变化情况稳健的特征是很困难的,这使得过去的研究者侧重研究针对每种变化类型的方法,比如能应对不同年龄的方法、能应对不同姿势的方法、能应对不同光照条件的方法等。
近段时间,传统的人脸识别方法
火车站人脸识别
人脸识别技术这些年已经发生了重大的变化。传统方法依赖于人工设计的特征(比如边和纹理描述量)与机器学习技术(比如主成分分析、线性判别分析或支持向量机)的组合。人工设计在无约束环境中对不同变化情况稳健的特征是很困难的,这使得过去的研究者侧重研究针对每种变化类型的方法,比如能应对不同年龄的方法、能应对不同姿势的方法、能应对不同光照条件的方法等。
近段时间,传统的人脸识别方法已经被基于卷积神经网络(CNN)的深度学习方法接替。深度学习方法的主要优势是它们可用非常大型的数据集进行训练,从而学习到表征这些数据的蕞佳特征。网络上可用的大量自然人脸图像已让研究者可收集到大规模的人脸数据集,这些图像包含了真实世界中的各种变化情况。使用这些数据集训练的基于 CNN 的人脸识别方法已经实现了非常高的准确度,因为它们能够学到人脸图像中稳健的特征,从而能够应对在训练过程中使用的人脸图像所呈现出的真实世界变化情况。
此外,深度学习方法在计算机视觉方面的不断普及也在加速人脸识别研究的发展,因为 CNN 也正被用于解决许多其它计算机视觉任务,比如目标检测和识别、分割、光学字符识别、面部表情分析、年龄估计等。
人脸识别技术的优劣势
人脸识别技术的优势
1、自然性,就是指通过观察人们所具有的自然性的脸部生物特征来进行身份的确认,识别方式十分便捷,用户不需要携带任何证件或额外进行其他操作
2、不易察觉性,被识别的人脸图像信息能够主动获取,可以让被测个体不察觉,人脸识别是利用可见光获取人脸图像信息,或者是红外线与可见光融合的多光源人脸图像识别技术。这种特殊的采集方式可以不被人察觉,不会陷于被伪装欺骗的境地。
3、非接触性,相比较其他生物识别技术,人脸识别是具有非接触的,用户不需人脸与设备直接来接触的,可以同时满足多人连续进行人脸图像信息的识别和分拣。
4、非侵扰性,人脸识的非接触性也为被采集者带来非侵扰性的体验。对人脸的采集不需要被采集者配合也不用工作人员干预。而且人脸属于暴露在外的生物特征,对人脸的识别采集容易被大众接受。
人脸识别技术的劣势
因为人类脸部存在相似性,不同个体之间的区别不大,所有的人脸的结构都相似,在加上化妆的掩盖及双胞胎的天然相似性更增加识别的难度。还有就是人脸存在易变性,人脸的外形很不稳定,可以通过脸部的变化产生很多表情,而在不同观察角度人脸的视觉图像也不同。另外,人脸识别还受光照条件、人脸的很多遮盖物、年龄等多方面因素的影响。
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。下面宣城盛宇小编给大家介绍一下人脸图像特征提取。
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数 特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。
人脸特征提取的方法归纳起来分为两大 类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。基于知识的表征方法主要是根据人脸的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分 量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特 征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。
主流的
人脸识别系统基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。
1、基于几何特征的方法是蕞早、蕞传统的方法,通常需要和其他算法结合才能有比较好的效果;
2、基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动
态连接匹配方法等。
3、基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。
(作者: 来源:)