硅是强烈促进石墨化的元素,是铸铁中的主要组元,硅强烈削弱Fe-C结合键,明显扩大TEG~TEM区间以及显著提高TEG三个方面影响石墨的析出,故硅比碳有更强的石墨化能力。文献指出,当w(Si)<1.2%,即使将碳量升高至w(C)>3.5%也难获得完全的灰口凝固[9]。进口五十铃6FG1缸体服务热线。
因此,孕育前原铁液必须要有一定的硅含量,其可来自生
进口五十铃6FG1缸体
硅是强烈促进石墨化的元素,是铸铁中的主要组元,硅强烈削弱Fe-C结合键,明显扩大TEG~TEM区间以及显著提高TEG三个方面影响石墨的析出,故硅比碳有更强的石墨化能力。文献指出,当w(Si)<1.2%,即使将碳量升高至w(C)>3.5%也难获得完全的灰口凝固[9]。进口五十铃6FG1缸体服务热线。
因此,孕育前原铁液必须要有一定的硅含量,其可来自生铁、熔炼过程中随炉料加入的硅铁或碳化硅。原铁液中硅含量取决于铸件大小及结构,一般认为,冷却速度相对较快的机缸体缸盖铸件,原铁液中硅含量要求相对较高,而冷却速度相对较慢的柴油机缸体缸盖原铁液中硅相对要低。通过试验对比,在相同孕育量(0.3%硅钡锆出炉孕育和0.05%硅锶随流孕育)、相同碳化硅用量及相同合金含量条件下,w(C)=3.2%~3.35%之间时,原铁液中硅从1.4%增加到2.0%,碳化物及铁素体减少,石墨长度变长,渗漏倾向增加。进口五十铃6FG1缸体服务热线。
通过采用合成铸铁工艺,合理设计合金元素的加入量,降低了发动机缸体缸盖的主材成本,每吨降低成本200元左右(以缸体为例),数据见表6-表7,若一年生产25 000 t铸件,直接经济效益将近500万元。通过优化熔化工艺、采取措施后,发动机缸体缸盖的渗漏率从2%降低到1%以下,经过一段时间验证,渗漏废品率很稳定。若一年生产发动机15万台,一年就可以减少废品将近1 500台,降低质量成本200余万元。进口五十铃6FG1缸体服务热线。
采用合成铸铁技术生产灰铸铁的过程中,消除了石墨粗大带来的遗传效应,提高了铸件硬度的均匀性,减少了缩松倾向,细化了石墨,改善了铸件的切削加工性能。使用经过高温石墨化的增碳剂是生产合成铸铁的关键所在。碳化硅的使用增加了石墨形核能力,减少了白口倾向,提高了铸件的抗拉强度。废钢用量增大后,使用硅钡锆孕育剂,可抑制孕育减少氮气孔。合理设计合金元素的加入量,大幅度降低了生产成本及质量成本,降低客户抱怨度,提高了企业的竞争力。进口五十铃6FG1缸体服务热线。

笔者公司生产的康明斯系列柴油机发动机缸体缸盖铸件(不镶缸套)重 50~250 kg,平均壁厚为5 mm,材质HT250。要求本体抗拉强度≥207 MPa,硬度179-241 HB,铸件不允许有砂眼、渣眼、缩松、裂纹等缺陷。采用10吨中频感应电炉熔化铁液,过热温度为 1 510~1 530 ℃。进口五十铃6FG1缸体服务热线。
采用合成铸铁工艺,消除了生铁中粗大石墨的遗传性,石墨大小为4~5级,石墨形态得到改善,使石墨分布更均匀,同时降低了铸件的缩松倾向,改善了铸件的加工性能。在一定范围内提高铁液的过热温度,延长高温静置时间,能使石墨细化,基体组织细密,抗拉强度提高;若进一步提高过热温度,铁液的形核能力下降,石墨形态变差,甚至出现自由渗碳体,使得强度性能范围下降,因此存在一个“临界温度”。进口五十铃6FG1缸体服务热线。

在灰铁、球铁和可锻铸铁方面,都是通过SiC+FeO=Si+Fe+CO[1]这个反应,用SiC来降低FeO和MnO在渣中的含量,从而净化铁液。由于碳化硅的熔点较高,加入碳化硅的时间是关键,如果加入太晚,碳化硅未全部进行熔解扩散,其中未熔融的碳化硅会以颗粒状的形态存在于铁液中,在铁液浇注后反而会形成渣眼;如果加入时间太长,铁液经过长时间的熔炼后,碳化硅所形成的形核也会慢慢消失,只能起到简单的增硅作用。进口五十铃6FG1缸体服务热线。
碳化硅的加入时间是在中频炉熔融1/3炉料时,并且炉料已经化清时加入,伴随着铁液的搅拌作用,碳化硅的扩散效果会更好。公司通过对比不加和加1%碳化硅的原铁液白口,检测三角试块对比(图4、图5),加入碳化硅的原铁液白口为6mm,不加碳化硅的原铁液白口为10mm。由于碳化硅经过一系列的冶金反应,反应产物中非平衡石墨可作为石墨生长的有效核心,降低了原铁液的白口倾向。进口五十铃6FG1缸体服务热线。

(作者: 来源:)