光学玻璃中关于消除色差的相关介绍
复消色差 (APOchromatic) :可以想象,如果某种材料随波长变化折射率的数值可以任意控制,那么我们就能够设计出完全没有色差的镜头。可惜,材料的色散是不能任意控制的。石英玻璃具有极低的热膨胀系数,高的耐温性,极0好的化学稳定性,优良的电绝缘性,低而稳定的超声延迟性能,的透紫外光谱性能以及透可见光及近红外光谱性能,并有着高于普通
JGS1 光学石英
光学玻璃中关于消除色差的相关介绍
复消色差 (APOchromatic) :可以想象,如果某种材料随波长变化折射率的数值可以任意控制,那么我们就能够设计出完全没有色差的镜头。可惜,材料的色散是不能任意控制的。石英玻璃具有极低的热膨胀系数,高的耐温性,极0好的化学稳定性,优良的电绝缘性,低而稳定的超声延迟性能,的透紫外光谱性能以及透可见光及近红外光谱性能,并有着高于普通玻璃的机械性能。我们退一步设想,如果能够将可见光波段分为蓝-绿、绿-红两个区间,而这两个区间能够分别施用消色差技术,二级光谱就能够基本消除。
但是,经过计算证明:如果对绿光与红光消色差,那么蓝光色差就会变得很大;如果对蓝光与绿光消色差,那么红光色差就会变得很大。理论计算为复消色差找到了途径,如果制造凸透镜的低折射率材料蓝光对绿光的部分相对色差恰好与制造凹透镜的高折射率材料的部分相对色差相同,那么实现蓝光与红光的消色差之后,绿光的色差恰好消除。太多了,有些抛光粉颗粒并不参与工作,同时也带来大量液体使玻璃边面的温度下降,影响抛光效率。
这个理论指出了实现复消色差的正确途径,就是寻找一种特殊的光学材料,它的蓝光对红光的相对色散应当很低、而蓝光对绿光的部分相对色散应当很高且与某种高色散材料相同。萤石就是这样一种特殊材料,它的色散非常低(阿贝数高达95.3),而部分相对色散与许多光学玻璃接近。 荧石(即氟化钙,分子式CaF2)折射率比较低(ND=1.4339),微溶于水,可加工性与化学稳定性较差,但是由于它优异的消色差性能,使它成为一种珍贵的光学材料。我们可以提供完整的线路安装和规格,您也可以手工DIY您的产品,我们有各种颜色的光学玻璃供您选择。萤石早仅用于显微镜中,自从萤石人工结晶工艺实现以后,超长焦镜头中萤石几乎是不可或缺的材料。
由于萤石价格昂贵、加工困难,各光学公司一直不遗余力的寻找萤石的代用品,氟冕玻璃就是其中一种。各公司所谓AD玻璃、ED玻璃、UD玻璃,往往就是这一类代用品。
光学玻璃可以用作投影仪屏幕
除了用作室内照明调整的工具外,光学玻璃还可用作投影机的窗帘。如果它被用作非透明状态下的窗帘,它比普通窗帘要好得多。由于玻璃本身的分子密度很大,与传统的窗帘结构相比,光对这种窗帘的影响是非常柔和清晰的。
光学玻璃在我们的生活中发挥着非常重要的作用。除了掌握这种玻璃产品的正式使用外,我们还必须提醒工人在安装和运输过程中要更加谨慎。理论计算为复消色差找到了途径,如果制造凸透镜的低折射率材料蓝光对绿光的部分相对色差恰好与制造凹透镜的高折射率材料的部分相对色差相同,那么实现蓝光与红光的消色差之后,绿光的色差恰好消除。该产品,因为玻璃本身的脆弱性决定了它是一种危险的产品,所以只要我们注意某些使用和保养方法,基本上这种玻璃产品的优点和性能可以大化。
光学玻璃可以调节光线以改变玻璃的透明度。它可以随时调整。它可以保护个人隐私和商业秘密。在一些大型企业中,我们可以看到这种光学玻璃的应用。 整个光学玻璃的安全性能系数很高,因为用于玻璃的材料非常好,玻璃的厚度相对较厚。整个光学玻璃的安全性能系数很高,因为用于玻璃的材料非常好,玻璃的厚度相对较厚。在某些情况下,有很强的战斗力,即使在特殊情况下,碎片破碎后也不会溅到各处造成意外伤害。
光学玻璃高精化的方法
在线电解修锐法(Elect roly tic Inprocess Dressing , 简称ELID 法) 早期的在线电解休整磨削对光学玻璃进行加工的方法,其得到的光学玻璃材料表面仍存在一些亚表面损伤和微裂纹,这些表面缺陷可以通过游离的磨粒进行抛光而去除。因而,人们想找到一种更好的、能结合ELLD磨削的光整加工工艺。EL ID 磨削可用来进行硬脆材料的、率磨削,而MRF 可用来进行确定性形状的修正与抛光。本文提出结合MRF 与EL ID 磨削的组合工艺对各种光学材料(如玻璃透镜、碳化硅、硅晶玻璃等) 进行超精密加工的方法,即采用EL ID 磨削进行预抛光以率地获得高质量表面,然后采用MRF 以进一步减小表面粗糙度和形状误差。利用该组合加工工艺可以在短时间内得到亚纳米级的表面粗糙度和峰谷值为λ/ 20nm的形状精度。光学玻璃可以用作投影仪屏幕除了用作室内照明调整的工具外,光学玻璃还可用作投影机的窗帘。由此可见,该方法是可取的。
(作者: 来源:)