变压器事故检测与维修
一般情况下油温的变化可以改变油位。随着油温的变化,油位也相应出现—定范围的改变。但是,在不正常情况下,由于渗油、渗水等故障和其他事故也会引起油位的异常变化。(5)变压器接地是否良好,一、二次引线及各触点是否紧固,各部分电气距离是否符合要求。其次,油温的变化与负荷状况、环境温度等条件有关。当油位变化与这些因素不一致时,则可能是假油位。出现假油
三相干式变压器定制
变压器事故检测与维修
一般情况下油温的变化可以改变油位。随着油温的变化,油位也相应出现—定范围的改变。但是,在不正常情况下,由于渗油、渗水等故障和其他事故也会引起油位的异常变化。(5)变压器接地是否良好,一、二次引线及各触点是否紧固,各部分电气距离是否符合要求。其次,油温的变化与负荷状况、环境温度等条件有关。当油位变化与这些因素不一致时,则可能是假油位。出现假油位的原因: 油标管堵塞; 防爆管排气孔堵塞。另外,油位过高将造成溢油;油位过低,则可能造成变压器内部引出线乃至线圈外露,导致内部放电。
处理方法和应急措施:有气体继电保护的将其跳闸回路解除,防止误跳闸。当班电气设备操作人员要经常检查油位计指示,发现油位过高时可适量放油;油位过低时及时补油。变压器短路故障原因因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。若是由于变压器漏油引起的,则应采取停电检修及其它应急措施。当发现油枕或防爆管异常喷油时,应立即切断变压器的电源,以防止故障和事故的扩大。
变压器的各部件工作介绍
变压器工作原理与开关电源相似,二极管VD1~VD4构成整流桥把市电变成直流电,由振荡变压器T1,三极管VT1、VT2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器T2对高频高压脉冲降y,获得所需的电压和功率。
R1为限流电阻。电阻R2、电容C1和双向触发二极管VD5构成启动触发电路。2、短路阻抗测试仪内部采用电压电流同步交流采样及信号数字处理技术,测量数据准确。 三极管VT1、VT2选S13005,其B为15~2 0倍。也可用C3093等BUceo>=35OV的大功率三极管。触发二极管VD5选用32V左右的DB3或VR60。
振荡变压器可自制,用音频线绕制在 H7 X 10 X 6的磁环上。另外,正常励磁变压器开关电源输出电压的调制幅度远反励磁变压器开关电源。TIa、T1b绕3匝,Tc绕1匝。铁氧体输出变压器T2也需自制,磁心选用边长27mm、宽20mm、厚10mm 20mm、宽15mm、厚10mm 的EI型铁氧体。T2a用直径为0.45mm高强度漆包线绕100匝,T2b用直径为1.25mm高强度漆包线绕8匝。
二极管VD1~VD4选用 IN4007型,双向触发二极管选用DB3型,电容C1~C3选用聚丙聚酯涤纶电容,耐压250V。
电路工作时,A点工作电压约为12V;B点约为25V;C点约为105V;D点约为10V。如果电压不满足上述数值,或电路不振荡,则应检查电路有无错焊、漏焊或虚焊。
然后再检查VT1、VT2是否良好,T1a、T1b的相位是否正确。整个电路装调成功后,可装入用金属材料制作的小盒内,发利于屏蔽和散热,但必须注意电路与外壳的绝缘。引外,改变T2 a、b二线圈的匝数,则可改变输出的高频电压。
变压器主要有哪些优点
在应用过程中采用的是励磁变压器开关电源,在直流电压互感器一次线圈上通电后,变压器次级线圈提供功率输出,输出电压幅值基本稳定.此时,虽然输出功率不断变化,输出电压幅值基本不变,这表明暂态励磁变压器开关电源输出电压控制特性比较好.
仅在控制开关关断输出功率都是由储能储能电容和电感都在同一时间,输出电压,负荷电流的影响,但如果储能电容的容量增益较大时,负载电流对输出电压的影响很小.
在应用过程中,除了上述优点和特点外,正冲击式变压器具有显著的特点,即负载能力强,输出电压纹波小.这是因为正常的冲击式变压器开关电源一般是选择变压器输出电压周平均值,储能电感在控制开关开、关时提供的负载电流输出.
如果请求是励磁变压器开关电源输出电压有较大的调整,在正常负载的情况下,控制开关的占空比是在0.5左右的j选择,或稍大于0.5,此时通过储能滤波电感电流的连续电流.当流经储能滤波器电感的电流为连续电流时,负载能力比较强.
当然,也会有一些缺点.在实际应用中,正电源变压器的缺点也很明显.其中一个典型的缺点是它的电路使用一个大的储能滤波器电感,以及一个延续二极管,比反励磁变压器开关电源.另外,正常励磁变压器开关电源输出电压的调制幅度远反励磁变压器开关电源.
因此,有源变压器开关电源的误差信号幅值较高,误差信号放大器的增益和动态范围也较大.另外,为了降低变压器励磁电流,提高工作效率,变压器的电压一般较大.
除了上面提到的两个缺点,正激式电源变压器和反激式变压器相比,有一个更大的缺点是在控制开关关闭时,变压器初级线圈产生的反电动势电压要比反激式变压器反电动势由高电压开关电源产生.
在正常励磁变压器开关电源工作中,由于控制开关占控制开关占0.5左右,反激变压器控制开关比例相对较小.变压器初级线圈两端产生的反电动势电压是由励磁电流流过变压器初级线圈产生的.
(作者: 来源:)