涡街流量计的使用在特定的流动条件下,一部分测量介质动能会转化为测量介质振动,其振动频率与流速(流量)有确定的比例关系,依据这种原理工作的流量计称为测量介质振动流量计。由于测液体流量时,流量指示一般为质量或重量流量,漩涡流量计由漩涡频率→流速→体流量×密度质量流量,当指示值以质量流量表示时,刻度系数中包含密度的因素,所以密度变化对指示值有影响,必须进行密度修正。目前测量介质振动流
涡街流量计型号
涡街流量计的使用在特定的流动条件下,一部分测量介质动能会转化为测量介质振动,其振动频率与流速(流量)有确定的比例关系,依据这种原理工作的流量计称为测量介质振动流量计。由于测液体流量时,流量指示一般为质量或重量流量,漩涡流量计由漩涡频率→流速→体流量×密度质量流量,当指示值以质量流量表示时,刻度系数中包含密度的因素,所以密度变化对指示值有影响,必须进行密度修正。目前测量介质振动流量计有三类:涡街流量计、旋进(旋涡进动)流量计和射流流量计。
涡街流量计具有以下一些特点:
①输出为脉冲频率,其频率与被测测量介质的实际体积流量成正比,不受测量介质组分、密度、压力、温度的影响;
②测量范围宽,一般范围度可达10:1以上;
③准确度为中上水平;
④无可动部件,可靠性高;
⑤结构简单牢固,安装方便,维护费较低;
⑥使用范围广泛,可适用液体、气体和蒸汽。
涡街流量计的工作原理:在测量介质中设置旋涡发生体(阻测量介质),从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡曼涡街,旋涡列在旋涡发生体下游非对称地排列。一、按连接方式分类按涡街流量计与管道的连接方式可以分成法兰连接型和法兰夹装型。涡街流量计输出的脉冲频率信号不受测量介质物性和组分变化的影响,即流量计系数在一定雷诺数范围内仅与旋涡发生体及管道的形状尺寸等有关。但是在物料平衡及能源计量中需流量检测质量流量,这时流量计应同时监测体积流量和测量介质密度,测量介质物性和组分就会对流量计量产生直接影响。
1、涡街流量计与孔板流量计目前的技术水平
涡街流量主的基本结构由涡街发生体、检测元件、信号处理放大电路组成,目前对于涡街发生体的研究已达到相当完善的程度,以三角型发生体为比较佳型体,检测元件有热敏电阻、应变片、压电晶体、差动电容、超声波等。可广泛用于大、中、小型各种管道给排水、工业循环、污水处理,油类及化学试剂以及压缩空气、饱和及过热蒸汽、天然气及各种介质流量的计量。信号处理部分有许多已微机化。涡街流量计具有安装方便(可直接在管道上安装)、体积小、互换性强、长期运行精度高,可适用于大多数液体、气体和蒸气测量。目前世界市场涡街流量计的销售额每年递增30%左右。
孔板节流装置由于结构简单,造价低、可*等优点,它几乎适用于所有介质测量,而与之配套的差压变送器发展迅速,使其本身具有的不足得以弥补。
2、涡街流量计与孔板流量计综合性能评价
孔板流量计(简称孔板)由节流件取压装置和差压变送器组成,导压管对于易冻的场所需要有伴热措施,一个流量测量回路静密封点为20个左右,使用中存在如下问题:
易冻、易堵、易漏、伴热容易造成差压变送器器件老化、某些场合导压管需加隔离液,由于伴热或工艺操作不稳,正、负导压管隔离液液线常常不等,产生液柱差,使流量指示不准。
涡街流量计容易受到振动的干扰,设计精良的涡街流量计可以通过硬件和数字信号处理将干扰排除,从而得到稳定的信号。(4)部分低粘度的油品流量测量,如煤油、柴油,还有经加温粘度降低的重油、渣油等的流量测量。涡街流量计安装的前后需要很长的直管段,有些厂家可以提供在流量计内部缩径的设计,大大降低了用户专门维涡街流量计配备直管段的需求。涡街流量计安装点的上游较近处若装有阀门,不断地开关阀门,对流量计的使用寿命影响极大,非常容易对流量计造成性损坏。流量计尽量避免在架空的非常长的管道上安装,这样时间一长后,由于流量计的下垂非常容易造成流量计于法兰的密封泄露,若不得已安装时,必须在流量计的上下游2D处分别设置管道紧固装置。
涡街流量计仪表常数与流体流速的关系及分段补
涡街流量计仪表常数与流体流速的关系及分段补偿,通过对涡街流量计的仪表常数随着流速的变化而略有起伏这个规律的观察与总结,建立数学模型,并根据这个数学模型,可以在不同的流速段对仪表常数做适当的补偿,可以提高涡街流量计的计算精度,该方案通过单片机809C51实现。蒸汽流量计采用卡门涡街原理制造,具有测量精度高、量程宽、功耗低、安装方便、操作简单、压力损失小、免现场调试等优点,是目前比较理想的蒸汽计量仪表。
根据多年的应用经验以及大量的现场数据,我们发现涡街流量计的仪表常数与流体的流速存在一定的关系,本文通过寻找涡街流量计仪表常数与流体流速的关系,建立了两者的数学模型,在流量计算时对它进行补偿,提高了计算精度。
1.1 涡街流量计的工作原理
涡街流量计是基于卡门涡街原理制成的一种流体振荡性流量计,即在流动的流体中放置一个非流线型的对称形状的物体(涡街流量传感器中称之为漩涡发生体),就会在其下流两侧产生两列有规律的漩涡,即卡门涡街其漩涡频率正比于流体速度:
1.2 涡街流量计的特点
(1)输出的信号是与流速成正比的脉冲信号,便于数据处理和计算机联网。
(2)量程范围宽,精度高。
(3)无可动部件,可靠性较高,结构简单,便于安装维修。
(4)检测元件与被测介质不直接接触,不受流体的化学性质影响,应用范围宽,寿命长。
(5)抗干扰能力强,容易进行流量计算,不受流体物理性质的影响,给仪表的标定和使用带来了方便。
2 误差的产生及补偿
2.1 非线性误差的产生
由于涡街传感器所测的并不是平均流速,而是漩涡发生体两侧的流速。一般用户选择在市场上购买涡街流量传感器时,要购买有○MA标志的涡街流量传感器。对于湍流状态,不同的雷诺数下,流速分布规律是不同的,即不同的流速下具有不同的流速分布,进而说明了涡街流量传感器检测到的主要反映漩涡发生体两侧的流速,与管道平均流速的关系不是确定的。这说明涡街流量传感器的非线性误差是其检测机理所决定的。在实际使用时,先绘出传感器的仪表常数与流体流速的试验曲线,据此得到不同流速段的实际仪表常数。本文应用MCS251单片机系列的89C51将试验曲线事先固化于流量计的EPROM中,用户结合现场具体工作情况通过键盘输入平均仪表常数KP的值(KP= (Kmax+Kmin) /2),实现了涡街传感器的非线性修正。
2.2 仪表常数与流体流速的关系及分段补偿
我们知道涡街流量计频率与流量成正比,理论上讲,涡街流量计输出频率与流速成正比,也就是说仪表常数恒定。(5)大管径管道水流量测量,其中满管式涡街流量计主要用于中小管径,而插人式涡街流量计可用于大管径(DN≥300mm)管道流量测量。实际上,由于流量计本身的因素导致两者之间存在一定程度的非线性误差。鉴此,我们做出了一条仪表常数与流速的实验关系曲线,如图1所示。图中各点坐标分别为A(Vmin,1.004 9KP),B(15%Vmax,0.997KP),C(30%Vmax,0.992853KP),D(50%Vmax,0.994883KP),E(75%Vmax,KP),F(Vmax,KP)。
针对这种误差规律,我们采取分段补偿的方式进行误差修正。由图1可以看出,随着流速的降低,曲线偏离平均值越大,对此我们采用的方法可以达到两个目的:
(1)无论偏差值多大,只要它有规律可循,就可补偿修正,还可以把流量的下限即Vmin在坐标上向左移动,即扩大传感器的量程。
(2)根据精度要求合理划分区间,在误差大的低流速区间线段取密一些,在误差小