蜗壳优化对6-39离心风机金属叶轮稳定运行的影响
蜗壳是离心风机金属叶轮的重要组成部分。它可以通过导流与扩大压力来提高离心风机的效率。蜗壳入口气流由于受到蜗壳流动不对称的影响,导致分布不均的现象发生。这种分布不均匀的现象会直接堵塞叶轮出口,从而使叶轮发生周期性的加速或减速,进而降低离心风机的工作效率,缩小了6-39离心风机工作的范围,影响了金属叶
6-39离心风机
蜗壳优化对6-39离心风机金属叶轮稳定运行的影响
蜗壳是离心风机金属叶轮的重要组成部分。它可以通过导流与扩大压力来提高离心风机的效率。蜗壳入口气流由于受到蜗壳流动不对称的影响,导致分布不均的现象发生。这种分布不均匀的现象会直接堵塞叶轮出口,从而使叶轮发生周期性的加速或减速,进而降低离心风机的工作效率,缩小了6-39离心风机工作的范围,影响了金属叶轮的平稳运行。因此在蜗壳的优化设计过程中必须将蜗壳宽度对流场的影响考虑在内,合理设计外壳的宽度,降低对流场的影响。从而保证金属叶轮的平稳运行。但是同流量下,普通圆弧形集流器比加米字形集流器风机压差大,有效值大2366Pa,风机全压差加米字形比普通圆弧形小2350。
电机优化对6-39离心风机金属叶轮稳定运行的影响吸油烟机、空调系统等设备空间较小,为了节省空间,一般会使用内藏电动机设备。内藏电动机的长度、头部倾角等在一定程度上影响着风机性能和噪音。对内藏电动机的形状设计不当会增加金属叶轮内部的流动损失,从而导致噪声增大,离心风机性能降低。电动机的轴向长度和气流的排挤率呈正相关的关系。叶轮进口处的流道变窄会使前盘处脱流区域变大,从而导致金属叶轮内部损失增加。因此,在设计电机形状时,应充分考虑电机形状对叶轮内部流动的影响,从而提高金属叶轮的稳定性,确保离心风机的性能。本文将对加米字支撑架的集流器和普通圆弧形集流器进行整机数值模拟,重点分析这2种结构形式对掘进工作面的粉尘的导流效果,并对比其对风机性能的影响,为掘进工作面降尘效率的提高提供理论依据。
6-39离心风机进气箱出口处(叶轮进口处)水平横向截面速度的矢量图及云图,从图中可以看出,虽然其出口几何结构是对称的,然而在出口处其流速为不均匀分布,靠进气方向处流速较高,被进气方向速度较低,气流经弯头转弯后,流速分布比较紊乱,从而使得进入风机叶轮的流速不均匀,与文献的研究结果一致,这是导致离心风机效率低的原因之一。本文对吸声蜗壳对风机降噪效果进行了研究,分别对单独蜗板、后盖板、蜗板与后盖板、蜗板与前盖板加装消声材料的4种方式进行了试验测量,在6-39离心风机全工况范围内,风机噪声都有不同程度的降低,其中蜗板加后盖板组合的降噪效果好。
进气箱内的流动损失
进气箱的流动损失可以通过数值模拟计算分析,为理论研究提供参考,其大小为进气箱出口截面的动压乘以损失系数。由于进气箱出口速度大致与叶轮的进口速度一样。
进气箱对离心风机性能的影响可知在进气箱出口与6-39离心风机叶轮进口处存在涡旋现象,研究中发现该涡旋与流量大小有关,在大流量区涡旋不明显,且位于进气箱侧的叶轮叶套的进口处,随着流量的减小,涡旋形状更加的明显,并向进气箱出口方向B侧偏移。可以看出,原始风机叶轮流道内靠近出口处形成涡旋,主要原因是叶片出口附近存在较为严重的边界层分离现象。6-39离心风机叶片表面存在附面层,随着叶轮旋转,吸力面和压力面附面层的结构和形态是不同的。进气箱对离心风机性能的影响可知在进气箱出口与6-39离心风机叶轮进口处存在涡旋现象,研究中发现该涡旋与流量大小有关,在大流量区涡旋不明显,且位于进气箱侧的叶轮叶套的进口处,随着流量的减小,涡旋形状更加的明显,并向进气箱出口方向B侧偏移。
为改善6-39离心风机受气体粘性影响导致流动分离加剧的现象,在传统蜗壳型线设计理论的基础上,研究气体粘性力矩对蜗壳壁线分布的影响,并采用动量矩修正方法对其进行改型设计。另外,为真实反映风机内流场分布情况,在标准k-ε 计算模型的扩散项中加入粘性应力作用,使其高计算误差降低至3%。对比分析改型前后风机数值模拟计算和试验测量结果可知,采用修改的k-ε 模型进行计算发现改型后风机内旋涡强度减小,蜗壳出口靠近蜗舌处流动分离得到改善。Sheard通过研究加进气箱的通风机,在6-39离心风机叶轮进口加导流板控制叶轮进口的非均匀气流,结果表明在叶轮进口加导流板能够提高风机的全压,并得出了叶片根部断裂的原因。试验结果表明:改型6-39离心风机出口静压提升约25Pa,较大全压效率较原型机提升约10%。
同时,由于蜗壳张开度扩大能够抑制流动分离,使蜗舌附近区域的旋涡强度及其影响区域减小,从而有效地降低了多翼离心风机噪声2.5dB。多翼离心风机广泛应用于国民经济的各个领域,是工业生产中主要耗能设备之一,蜗壳作为离心风机中不可或缺的基本元件,其结构的不对称性及内部流动的复杂性会对叶轮出口气流角造成较大影响,使其沿圆周方向呈现出明显的不对称性。而在风机实际运行过程中,6-39离心风机叶轮出口气流与蜗壳壁面间存在强烈的非定常干涉,使得蜗壳壁面成为风机的主要噪声源。6-39离心风机的噪声在小流量区,带进气箱的离心风机噪声不带进气箱,随着流量的增加,带进气箱的风机噪声显著提高,在大流量区,明显的高于不带进气箱的噪声。因此提高蜗壳型线设计水平,不仅能改善风机气动性能,还能达到降低噪声的效果。目前国内外学者对离心风机蜗壳型线的研究,主要集中在寻找能真实反映蜗壳内流体流动状态的设计方法。
(作者: 来源:)