超低氮燃烧器的原理是把一个火焰分成数个小火焰,由于小火焰散热面积大,火焰温度较低,使“热反应NO”有所下降。此外,火焰小缩短了氧、氮等气体在火焰中的停留时间,对“热反应NO”和“燃料NO”都有明显的抑制作用。烟气在高温区停留时间是影响NOx生成量的主要因素之一,改善燃烧与空气的混合,能够使火焰面的厚度减薄,在燃烧负荷不变的情况下,烟气在火焰面即高温区内停留时间缩短,因而使N
燃烧器价格优惠
超低氮燃烧器的原理是把一个火焰分成数个小火焰,由于小火焰散热面积大,火焰温度较低,使“热反应NO”有所下降。此外,火焰小缩短了氧、氮等气体在火焰中的停留时间,对“热反应NO”和“燃料NO”都有明显的抑制作用。烟气在高温区停留时间是影响NOx生成量的主要因素之一,改善燃烧与空气的混合,能够使火焰面的厚度减薄,在燃烧负荷不变的情况下,烟气在火焰面即高温区内停留时间缩短,因而使NOx的生成量降低。混合促进型燃烧器就是按照这种原理设计的。
(1)燃烧器采用的燃料和风门执行器:执行器为执行器,步进角度可达到0.1°,也就是说风门和燃气阀门开度从0~90°要走900步,这样对风量和气量控制精度大大提高。因此,可大限度使燃料耗量与负荷匹配,节约能源,燃烧效率可达99.9%。
(2)燃料和供风分开调节:燃料和风门由各自的执行器控制,在初期调试时设定好燃料和风量运行曲线,在实际运行中,执行器每走一步都与曲线进行比较,确保燃烧器在运行过程中时刻保持合理的空/燃配比,以降低空气过量或氧量不足带走的热损失。
(3)可增大燃烧器的调节比:由于执行器步进角精度的提高,可使小火位的燃料量和风量减少,燃烧器的调节比大大提高,有利于节能,降低NOX的排放。
很多客户通过我们的网站来电话咨询低氮燃烧机与普通燃烧机核心区别,那么今天小编就来讲解下低氮燃烧机与普通燃烧机核心区别。
目前,控制高温氮氧化物的技术有多种,包括燃烧器设计、废气或烟气再循环等。化学添加剂(如氨)。催化剂辅助。燃烧器制造商使用低氮氧化物偏转,空气分类和烟气循环。烟气再循环的目的可以通过将炉内燃烧产物引入火焰或将排气系统的POC与空气或燃料混合以降低炉内温度来实现。
烟气再循环可通过诱导燃烧来自炉火(POC)的POC产品或使用炉火燃烧POC排气系统、与空气或燃料混合、降低火焰温度来实现。可以用来控制反应速率的氧也被稀释,减少了氧进入氮氧化物反应的可能性。空气分级技术控制炉温和化学环境,从而减少氮氧化物的形成。
(作者: 来源:)