热动力学效应
颗粒与表面之间的综合冲击能量耗散和极快的热传递导致固体CO2瞬间升华为气体。气体在几毫秒内膨胀到颗粒体积的近800倍,这实际上是在撞击点处的“微爆”。
随着颗粒变成气体,“微爆”进一步增强,用于从基板上提升热的涂层颗粒。这是因为颗粒缺乏回弹能量,在冲击过程中往往会沿着表面分布其质量。CO 2气体沿表面向外膨胀,其产生的“冲击前沿”有效地提供了在表面和热
干冰清洗
热动力学效应
颗粒与表面之间的综合冲击能量耗散和极快的热传递导致固体CO2瞬间升华为气体。气体在几毫秒内膨胀到颗粒体积的近800倍,这实际上是在撞击点处的“微爆”。
随着颗粒变成气体,“微爆”进一步增强,用于从基板上提升热的涂层颗粒。这是因为颗粒缺乏回弹能量,在冲击过程中往往会沿着表面分布其质量。CO 2气体沿表面向外膨胀,其产生的“冲击前沿”有效地提供了在表面和热的涂层颗粒之间聚焦的高压区域。这导致非常有效的提升力以将颗粒带离表面。

80年代末,由于加工精度和集成电路技术的不断发展,美国对干冰制造机、喷射机进行了较大改进,体积大大缩小,重量减到2吨,并且利用微循环深冷技术,使CO2利用率进步近2倍,制造出不同硬度和尺寸的干冰颗粒,降低了本钱,使得该项技术由军事转向民用领域、产业领域,并得到飞速发展。进入90年代,我国的一些清洗、铸造等性书籍和杂志中,对该技术也只有扼要性先容。90年代末期,国内在引进国外成套设备的同时引进了干冰清洗设备。较早采用干冰清洗的上海汽车有色铸造总厂从干冰清洗中获得了巨大效益,有效的保障了铸件质量,进步了生产效率。
已成为仅次于美国的第二大能源消费国,能源问题已反映在石油开采和石化产品中。 “十五”和“十一五”期间,将石化产业的发展列为重点产业,并相继投入巨资建设和扩建多条石化生产线。能源的大规模使用将不可避免地增加环境保护的难度。因此,石化企业必须在有效生产的同时尽可能减少环境污染。这为干冰清洁技术提供了广阔的应用空间。目前,尚未使用干冰清洁技术的石化公司正在积极研究并借鉴同行的成功经验。

(作者: 来源:)