高压电缆
4.4试验判断
不发生击穿。
4.5检测部位
非金属护套与接头外护层(对外护层厚度2mm以上,表面涂有导电层者,基本上即对110kV及以上电压等级电缆进行)。
对于交叉互联系统,直流耐压试验在交叉互联系统的每一段上进行,试验时将电缆金属护层的交叉互联连接断开,被试段金属护层接直流试验电压,互联箱中另一侧的非被试段电缆金属护层接地,绝缘接头
茂名超高压电缆附件厂家
高压电缆
4.4试验判断
不发生击穿。
4.5检测部位
非金属护套与接头外护层(对外护层厚度2mm以上,表面涂有导电层者,基本上即对110kV及以上电压等级电缆进行)。
对于交叉互联系统,直流耐压试验在交叉互联系统的每一段上进行,试验时将电缆金属护层的交叉互联连接断开,被试段金属护层接直流试验电压,互联箱中另一侧的非被试段电缆金属护层接地,绝缘接头外护套、互联箱段间绝缘夹板、引线同轴电缆连同电缆外护层一起试验。2导体的交流电阻在交流电压下,线芯电阻将由于集肤效应、邻近效应而增大,这种情况下的电阻称为有效电阻或交流电阻。
交叉互联接地方式A相第壹段外护层直流耐压试验原理接线图
4.7典型缺陷及缺陷分析
序号①缺陷属典型施工问题,故障点定位后,施工方即说明该处电缆曾经被铁锹扎伤过,经处理后试验即通过,这一缺陷暴露了施工管理存在的问题。
序号②同类绝缘接头安装错误在两回电缆中发现了4处,反映出附件安装人员水平较低,外护套试验检测出缺陷避免了类似序号⑤运行故障的发生。
序号③缺陷原因也在于施工管理不严格,序号④缺陷原因在于附件安装质量差。
序号⑤为某单位一起110kV电缆故障实例,同时暴露出附件安装与交接试验两方面都存在问题。
首先,厂家工艺要求不合理,电缆预制件的铜编织带外层只要求一层半搭绝缘带,而且预制件在铜壳内严重偏心,导致绝缘裕度不够。
其次,在电缆外护层直流10kV/1min耐压试验时,试验电压把仅有的一层绝缘带击穿,但试验时互联箱中另一侧非被试段金属护层未接地,导致缺陷未及时被发现。
带电运行后,绝缘接头内部导通,造成电缆护套交叉互联系统失效,护套产生约几十安培感应电流。电缆敷设后,按设计要求将工井内的电缆固定在电缆支架上,并将排管口封堵好。电流流过接头的铜编织与铜壳接触处,产生的热量将中间接头预制件烧融,烧融区域破坏了橡胶预制件的应力锥的绝缘性能,场强严重畸变,接头被瞬间击穿,导体对铜壳放电,导致线路跳闸。
5. 测量金属屏蔽层电阻和导体电阻比
5.1试验目的
kp——线芯结构系数,分割导体kp=0.37,其他导体kp=
0.8~1.0;
对于使用磁性材料制做的铠装或护套电缆,Yp和Ys应比计算值大70%,即:
R=R′[1+1.17(YS+YP)]
3. 电缆的电鳡
3.1自鳡
则单位长度线芯自鳡:
Li=2W/(I2L)=μ0/(8π) =0.5×10-7
式中:
Li——单位长度自鳡,H/m;
μ0——真空磁导率,μ0=4π×10-7,H/m;
以上一般是实心圆导体,多根单线规则扭绞导体如下表:
因误差不大,计算一般取Li=0.5×10-7H/m。
3.2高压及单芯敷设电缆电鳡
对于高压电缆,一般为单芯电缆,若敷设在同一平面内(A、B、C三相从左至右排列,B相居中,线芯中心距为S),三相电路所形成的电鳡根据电磁理论计算如下:
对于中间B相:
LB=Li+2ln(2S/Dc) ×10-7 ( H/m)
对于A相:
LA=Li+2ln(2S/Dc) ×10-7 -α(2ln2 )×10-7 (H/m)
对于C相:
LC=Li+2ln(2S/Dc) ×10-7 -α2(2ln2 )×10-7 (H/m)
实际计算中,可近似按下式计算:
LA=LB=LC=Li+2ln(2S/Dc) ×10-7 ( H/m)
同时,经过交叉换位后,可采用三段电缆电鳡的平均值,即:
L=Li+2ln(2×(S1S2S3)1/3/Dc) ×10-7 ( H/m)
=Li+2ln(2×21/3S/Dc) ×10-7 ( H/m)
对于多根电缆并列敷设,如果两电缆间距大于相间距离时,可以忽略两电缆相互影响。

设计要点
1)垫层下为杂填土或软弱地基时,应进行地基处理,保证地基稳定密实且平整。
(2)有地下水时应采取必要的处理措施,保证无水作业。
(3)混凝土强度等级不应C10(小编提醒:新规程不C15)。
施工要点
(1)垫层下的地基应保持稳定、平整、干燥,严禁浸水。
(2)垫层混凝土应密实,上表面平整。
监理要点
(1)混凝土浇筑的强度应满足设计要求、坍落度应满足施工要求。
(2)混凝土浇筑的方法应满足规范要求。
(3)混凝土浇筑的振捣方法一般采用平板振捣器振捣、振捣时间不宜过长,振捣完成后采用大杠刮平。
(4)混凝土不能有离析现象。
(5)如遇冬季施工应有抗冻措施和保温措施。
(6)检查垫层厚度在个别地方不大于设计厚度的1/10、高程(±10mm)、宽度(±10mm)、表面应平整(±5mm)。
垫层图
2.2砖砌电缆沟砌筑与抹面、压顶
工艺标准
(1) 砖的抗压强度等级应不MU10。
(2) 砖应采用环保材料。
(3) 采用MU7.5的水泥砂浆进行抹面。
(4) 抹面厚度一般控制在20~30mm。
(5) 混凝土的强度等级不应C25,宜采用商品混凝土。
(6) 混凝土浇筑后应平整表面并采取适当的养护措施,保证本体混凝土强度正常增长。
(7) 若处于严寒或寒冷地区,混凝土应满足相关抗冻要求。
电缆及沟道防火
电缆火灾事故无论是受外界火源引起或自身故障造成,都具有火势猛、蔓延快、抢救难、损失严重等特点。施工要点(1)35kV及以上电缆保护管宜采用两半组合的电缆保护管,并采用非铁磁性材料。电缆着火原因多种多样,难以从根本上避免。因此,为避免电缆火灾事故的严重损失,一方面要积极设法清除电缆着火的隐患;另一方面,必须高度重视有效防止电缆着火延燃的对策。
目前,较为普遍的电缆防火方法是用防火材料来阻燃,防止延燃。现有的防火材料有防火涂料、防火堵、填料。
防火涂料:
膨胀型防火涂料的主要特点是以较薄的覆盖层起到较好的防火、阻燃效果,几乎不影响电缆的载流量。由于涂料在高温下比常温时膨胀许多倍,因此能充分发挥其隔热作用,更有利于防火阻燃,却不至于妨碍电缆的正常散热。
这种涂料具有刷涂和喷涂施工方便的长处,即使在狭窄隧道也可进行施工。然而对于大截面电缆,对电缆的热胀冷缩涂膜也不一定能适应,防火涂料多应用于中低压电缆,不适用于大截面的高压电缆。
防火包带的优点是可弥补涂料的缺点,适合于大截面的高压电缆,具有加强机械强度的保护作用;施工比涂料简便,能准确把握缠绕厚度,质量易得到保证。
-->