光波超精密——滚动气浮直线导轨
气浮静压i轴承不同结构尺寸的阻尼差异较大,在承载方向上阻尼较小,对外界引起的振动和空气轴承自身固有的微振动衰减较慢,影响了系统的稳定性和测量精度,因此在设计出气浮块后,必须对其阻尼系数进行准确的检测和评价。设计了一种测量计算气浮阻尼的仪器。常规阻尼测量方法需要记录气浮振动,并对计算阻尼进行再分析,在记录气浮振动的过程中,由于依靠气浮块的振动来带动记
滚动气浮直线导轨
光波超精密——滚动气浮直线导轨
气浮静压i轴承不同结构尺寸的阻尼差异较大,在承载方向上阻尼较小,对外界引起的振动和空气轴承自身固有的微振动衰减较慢,影响了系统的稳定性和测量精度,因此在设计出气浮块后,必须对其阻尼系数进行准确的检测和评价。设计了一种测量计算气浮阻尼的仪器。常规阻尼测量方法需要记录气浮振动,并对计算阻尼进行再分析,在记录气浮振动的过程中,由于依靠气浮块的振动来带动记录笔,因此记录结果误差较大,因而所测阻尼结果误差也较大。由于传统的阻尼测量过程繁琐,测量结果误差较大,提出采用的传感器和分析仪进行阻尼测量,测量结果接近真值,方法简便。其用途十分广泛。
光波超精密空气导轨——滚动气浮直线导轨
测得静压式导轨气浮块阻尼特性的试验检测装置,包括:冲击式导轨1、加速度传感器保护盒2、加速度传感器3、气浮块4、模态分析仪5、工作台6、气源7、气源减压阀8、单向阀9、供气压力阀10、气浮块11;气源7依次通过气源减压阀8、单向阀9与气源减压阀11连接;冲击式导轨3、冲击式导轨1与气浮块4连接;气浮块4放置在工作台6上,气浮块3安装在气浮块4的中心和四角位置,气浮块3安装在加速度传感器2的位置,冲击式导轨1和冲击式导轨1分别与加速度传感器保护盒5连接;
光波超精密技术研究院——滚动气浮直线导轨
气浮导轨副由气浮块和承导面组成,每个承导面至少有两个气浮块,气浮块与承导面间隙中气体压力 p的分布状态能左右气浮块的性能。通过这个实验台的实验测量得到:供气量一定时,气浮块所受负荷增大,气浮厚度减小;当负荷减少时,气浮厚度增大。
工作台常用导轨有滚动导轨、静压力导轨等,滚动导轨的使用已有多年历史,滚动导轨的运动精度可达微米级,摩擦系数可降至0.002~0.003。滚动式导轨具有滚动摩擦阻力小,不存在爬行漂浮现象,但其摩擦系数大,抗冲击性能差,运动不平稳,使用寿命低等优点,在实际应用中还存在不足。
光波超精密气浮导轨——滚动气浮直线导轨
机导是传动系统运动的基础,也是传动系统的关键部件之一.由于空气粘性低,不易爬行、振动小、热稳定性好、不污染环境等优点,因此本试验装置采用空气静压导轨设计.空气静压导轨是将具有一定压力的空气通过节流器送入导轨间隙,通过静压使导轨悬浮起来,在导轨面之间形成一层极薄的气膜,气膜厚度基本保持恒定。
气浮导轨是传动系统运动的基础,是传动系统的关键部件之一。因其空气粘滞低、不易爬行、振动小、热稳定性好、不污染环境等优点。因此这次测试装置采用空气静压导轨进行设计。气静压力导轨是指通过书流器将有一定压力的空气输送到导轨间隙内,利用气静压力使导轨悬浮,在导轨表面之间形成一层极薄的气膜,而气膜厚度基本不变的纯空气摩擦滑动导轨。气浮导轨副由气浮块和承导面组成,每个承导面上至少有两个气浮块。
相同尺寸的空气轴承,工作时气膜厚度和节流孔直径减少,可使轴承的刚度提高,但如果节流孔过小,就会给加工制造增加难度,并且容易出现堵塞现象,因此,在空气轴承的具体设计中,还应考虑使用环境、加工水平等实际因素。空气轴承如果发生倾斜,气膜不均匀将降低空气浮力轴承的刚度,因此在使用时应尽量避免这种现象。气浮导轨在设计时,可尽可能将同一方向的空气轴承分散开来。
静压气浮导轨是由气浮块、导轨等部件组成。气浮运动时,气浮块与导轨间有压缩气体流动形成的气浮薄膜,这种气浮薄膜的存在,使气浮块与导轨面不直接接触,减少了摩擦,因而广泛应用于精密机床、测量机等精密机械。
(作者: 来源:)