武汉思特进科技发展有限公司成立于2007年,是一家以实验技术研发、实验产品研发、日化产品研发、实验项目承接为一体的高新技术公司;公司实验中心有分子生物学平台、细胞平台、光镜平台、植物组培平台、原核蛋白表达平台、日化产品生产平台;可以开展各类动、植物、细菌、细胞等生物实验。FLOWERINGLOCUSC(FLC)是草本植物春化途径关键基因。
采用根癌农
亚细胞定位
武汉思特进科技发展有限公司成立于2007年,是一家以实验技术研发、实验产品研发、日化产品研发、实验项目承接为一体的高新技术公司;公司实验中心有分子生物学平台、细胞平台、光镜平台、植物组培平台、原核蛋白表达平台、日化产品生产平台;可以开展各类动、植物、细菌、细胞等生物实验。FLOWERINGLOCUSC(FLC)是草本植物春化途径关键基因。
采用根癌农介导的方法,以受控于CaMV35S启动子的携带有GFP报告基因的双元植物表达载体pCAMBIA1300-35S-GFP转化洋葱表皮细胞.荧光显微镜下观察结果显示,GFP基因在经浸染和共培养后的洋葱表皮细胞中得到了表达,绿色荧光分布在细胞核和细胞质中,为进一步研究新基因的亚细胞定位和瞬时表达奠定了基础.
武汉思特进科技发展有限公司成立于2007年,是一家以实验技术研发、实验产品研发、日化产品研发、实验项目承接为一体的高新技术公司;公司实验中心有分子生物学平台、细胞平台、光镜平台、植物组培平台、原核蛋白表达平台、日化产品生产平台;可以开展各类动、植物、细菌、细胞等生物实验。GmTLP是本研究从大豆品种科丰1号中利用SMV诱导的双向电泳技术分离的类甜味蛋白编码基因,在大豆中存在两个拷贝,分别命名为GmTLP1和GmTLP2。
本研究旨在通过对根癌农侵染洋葱表皮细胞的条件进行优化,从而建立一种新的瞬时表达系统,并将其应用于玉米In5-2启动子的功能区域的分析中,明确In5-2启动子的乙酰类化合物诱导元件的具体位置。本文对禾本科模式植物二穗短柄草(Brachypodiumdistachyon)中的一个可能的阿魏酰基转移酶基因Bra1进行研究,其主要研究结果如下:1。在本研究中采用根癌农(A grobacterium tume faciens)侵染洋葱(Allium cepa)表皮细胞,对转β-葡糖醛酸酶(GUS)基因的瞬时表达进行研究,并分析了侵染液中乙酰丁香酮(As)的浓度、侵染时间、菌液浓度、共培养时间对GUS基因的瞬间表达的影响。结果显示,在OD600值为0.8的农液中15min,共培养3d,能够得到较高的GUS基因瞬间表达,从而建立了一种新的瞬间表达系统。同时,构建了含不同长度的玉米(Zeamays)In5-2启动子片段缺失载体,利用新的瞬时表达系统分析其功能区域,推测出乙酰类化合物诱导元件位于ATG上游-220~-143bp之间。结果表明新的瞬时表达系统可以有效地进行启动子的分析。
武汉思特进科技发展有限公司成立于2007年,是一家以实验技术研发、实验产品研发、日化产品研发、实验项目承接为一体的高新技术公司;公司实验中心有分子生物学平台、细胞平台、光镜平台、植物组培平台、原核蛋白表达平台、日化产品生产平台;可以开展各类动、植物、细菌、细胞等生物实验。利用ROS荧光指示剂DCFH-DA,Ca2+荧光指示剂Fluo-3AM和NO荧光指示剂DAF-FMDA检测胞内ROS、Ca2+和NO水平,发现亚可诱导酵母胞内ROS,Ca2+和NO水平显著升高。
谷氨酰胺合成酶(GS; EC 6.3.1.2)是植物N素同化途径中较为关键的催化酶之一,被称为是植物中无机态N转化为有机态N的“门户”,对植物N素吸收、同化和利用效率(Nitrogen use efficiency)有着极为重要的影响。Bra1编码蛋白的氨基酸序列中包含有BAHD酰基转移酶家族特有的HXXXD功能区以及DFGWG保守结构域,说明Bra1基因是BAHD酰基转移酶基因家族的一个成员。高等植物中的GS同工酶主要分为两类:胞质型GS1主要同化从土壤吸收的初级氨及再同化从植物体内各个N循环途径所释放的氨;质体型GS2同化由NO3--N还原而来及光呼吸过程所释放的氨。N素供应对甜瓜的生长发育、果实的产量和形成有非常重要的影响,目前甜瓜N素代谢研究还停留在N营养生理与果实及产量层面,在分子机理水平的研究报道很少,尤其是对与N素同化和利用效率紧密相关的GS酶基因的研究还是空白。因此,本文以甜瓜作为对象,在从甜瓜中出胞质型GS基因M-GS1的基础上,对M-GS1及课题组到的甜瓜质体型GS基因M-GS2的基因组拷贝数、表达产物的亚细胞定位及生化特性、在甜瓜中的表达调控特征等进行了研究和对比分析,从基因、蛋白质和细胞水平对甜瓜GS基因进行了系统的功能验证和鉴定,开展了甜瓜N营养代谢的分子生理研究;进而在植株水平研究M-GS1在转基因超量表达后提高植株N素同化效率的潜能,为甜瓜GS基因的应用、利用GS基因改良植物N素利用效率的研究提供新的材料和依据。
(作者: 来源:)