鉴于上述原因,本试验采取第二种微小孔加工方法:加工好两块平板,将它们合紧后沿两板的接触面打骑缝孔,然后把两平板分开,直接测量暴露在外的微小孔内表面。采用这种方法测得的微小孔内壁的粗糙度能准确地反映微小孔内表面的实际加工情况。
钻孔时,两平板全长采用平口钳夹紧,以避免激光打孔时平板弯曲或受力不均匀。在激光打孔装置上设有放大倍数为57倍的显微放大装置,可以较清晰地观察两平板的
微孔加工
鉴于上述原因,本试验采取第二种微小孔加工方法:加工好两块平板,将它们合紧后沿两板的接触面打骑缝孔,然后把两平板分开,直接测量暴露在外的微小孔内表面。采用这种方法测得的微小孔内壁的粗糙度能准确地反映微小孔内表面的实际加工情况。
钻孔时,两平板全长采用平口钳夹紧,以避免激光打孔时平板弯曲或受力不均匀。在激光打孔装置上设有放大倍数为57倍的显微放大装置,可以较清晰地观察两平板的接触面,故可较好的保证激光光束与平板接触面的相对位置并保证沿接触面打骑缝孔。平板接触面和加工工作台的垂直度可通过调整来保证。
微孔加工的辅助工艺有什么?
在工件的正面施加一个正向压力(例如吹气法),或是在工件的反面装一个低压仓,可有助于打孔过程中清除掉汽化材料并增加液相的排出。在脉冲结束以后,减弱熔化物不受控制地重新分布而造成对孔的尺寸及形状的影响,既改善了被加工孔的表面质量(如可使在孔的内壁上会由熔化金属产生的一层“再铸层”的厚度有效地的减少),并且可以防止金属蒸气凝聚在透镜上。
微小孔的加工一直是机械制造中的一个难点,围绕这个问题研究人员进行了大量研究。目前可用于加工微小孔的方法有:机械加工、激光加工、电火花加工、超声加工、电子束加工及复合加工等[1]。有关各种方法可加工的微小孔直径范围已有较多的报道,而对于加工所得微小孔侧壁粗糙度的研究却比较少。随着科学技术的发展和尖i端产品的日益精密化、集成化和微型化,微小孔越来越广泛地应用于汽车、电子、光纤通讯和流体控制等领域,这些应用对微小孔的加工也提出了更高的要求。例如,熔融沉积原型机所用喷头是一个高i精度微小孔,不仅要求孔径大小准确,而且要求孔壁光滑,有利于熔体挤出以及挤出时微小孔流体阻力的准确控制。本文通过对可用于原型机喷头的微小孔侧壁粗糙度进行测量,进一步研究该微小孔粗糙度对熔融沉积原型机所用喷头工作质量的影响。本研究结果还可对纺丝、喷墨打印机等其他行业中类似微小孔表面粗糙度的研究提供参考。
微孔加工需要满足的条件有哪些?
微孔加工工艺一直都是加工行业中比较受大家喜欢的一种工艺,但是有很多的人对微孔加工工艺,所需要满足的条件都不太了解
一、性:
当我们的坯料在五金模具型的腔中进行塑性变性时,沿型腔表面既流动又滑动,这样就可以让型腔表面与坯料间产生剧烈的摩擦,从而导致模具因磨损而失效。所以材料的性是模具基本、重要的性能之一。
二、强韧性:
微孔加工工艺的工作条件大多十分恶劣,有些常承受较大的冲击负荷,从而导致脆性断裂。为防止模具零件在工作时突然脆断,模具要具有较高的强度和韧性。
三、耐疲劳断裂性能:
模具工作过程中,在循环应力的长期作用下,往往导致疲劳断裂。其形式有小能量多次冲击疲劳断裂、拉伸疲劳断裂接触疲劳断裂及弯曲疲劳断裂。
(作者: 来源:)