电磁屏蔽
屏蔽导电漆就是能用于喷涂的一种油漆干燥形成漆膜后能起到导电的作用,从而屏蔽电磁波干扰的功能.屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。电磁屏蔽体:主要用来遏止高频电磁场的影响,使干扰场在屏蔽体内形成涡流并在屏蔽体与被保护空间的分界面上产生反射,从而大大削弱干扰场在被保护空间的场强值,达到了屏蔽效果。具体
屏蔽膜屏蔽效能
电磁屏蔽
屏蔽导电漆就是能用于喷涂的一种油漆干燥形成漆膜后能起到导电的作用,从而屏蔽电磁波干扰的功能.屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。电磁屏蔽体:主要用来遏止高频电磁场的影响,使干扰场在屏蔽体内形成涡流并在屏蔽体与被保护空间的分界面上产生反射,从而大大削弱干扰场在被保护空间的场强值,达到了屏蔽效果。具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。
在电子设备及电子产品中,电磁干扰(Electromagnetic Interference) 能量通过传导性耦合和辐射性耦合来进行传输。为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制,对辐射性耦合则需采用屏蔽技术加以抑制。用于电磁兼容目的的屏蔽体通常能将电磁波的强度衰减到原来的百分之一至百万分之一,因此通常用分贝来表述屏蔽效能。在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出。屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法。由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。
在电磁场(电磁波)中,导体表面将要吸收、损耗电磁场的能量,使得电磁场的传播从导体表面往里面是指数式衰减的(即电场和磁场的振幅是指数式衰减),这种现象就是趋肤效应。电磁屏蔽电磁兼容性(ElectromagneticCompatibility)缩写EMC,就是指某电子设备既不干扰其它设备,同时也不受其它设备的影响。利用趋肤效应即可阻止高频电磁波进入导体内部,以实现电磁屏蔽,因此可采用适当厚度的金属来制作电磁屏蔽罩。 由于趋肤电流是一种涡流,所以电磁屏蔽又称为涡流屏蔽。
为了获得有效的电磁屏蔽效果,导体屏蔽层的厚度必须接近电磁场的趋肤深度。电导率越高的材料,趋肤深度就越小。而电磁屏蔽是使电磁场只能透入屏蔽体一薄层,借涡流消除电磁场的干扰,这种屏蔽体可不接地。对于500kHz的广播频率,铜和铝的趋肤深度分别约为0.094mm和0.12mm ,因此铜片和铝片就能够实现较好的屏蔽了;对于更高频率的电磁场,还可以使用更薄的材料。
对于高频电磁场,一般不采用铁磁材料,因为铁磁材料有较大的磁滞损耗和涡流损失,会造成谐振回路因数(Q值)下降,站较多的是采用高电导率材料的电磁屏蔽。
电磁屏蔽的原理
电磁屏蔽是用屏蔽体阻止高频电磁场在空间传播的一种措施。电磁波在通过金属或对电磁波有衰减作用的阻挡层时,会受到一定程度的衰减,说明该阻挡层材料有屏蔽作用。材料的屏蔽效能与电磁波的自身特性及材料的性质有关。由于电偶极子和磁偶极子是上述两类源的基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成(图2)。电磁屏蔽机理常用分析方法有3种:借助电路理论,即电磁感应原理,通过涡流的屏蔽效应阐述电磁屏蔽的机理;根据电磁场理论,计算电磁波在不同传播媒介的分界面及媒质内部传输时产生的反射与衰减;根据传输线理论,行波在有耗非均匀传输线中会反射与损耗,这与电磁波在通过金属时的现象相似,用它计算屏蔽材料的反射与衰减,比经典的电磁场理论更为简便。随着数值计算方法的不断完善,有限元法及有限时域差分法已开始被用于复杂屏蔽体效能的计算。
(作者: 来源:)