中考数学解题实用方法
反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。另外,考试中发现的问题,正好给我们提高改进自己提供了一个比较明确的方向,改进自己的不足,总比真正中
中招冲刺辅导中心
中考数学解题实用方法
反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。另外,考试中发现的问题,正好给我们提高改进自己提供了一个比较明确的方向,改进自己的不足,总比真正中考中才遇到来的好。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;至少有两个。不管题难度如何,自己会做的就一定要在答卷上体现,特别是一些涉及到容易错、易混淆的知识点复习不能走马观花,复习时不深不透。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
如果数学课没有一定的速度,那是一种无效学习。慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。
在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。中考语文知识记忆以少记多法有时遇到两组容易混淆的知识材料,当记住一组便能推知另外一组的时候,可以采取“记住少数,推知多数”的学习方法。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结果遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。

考生需制定学习计划时,要结合自身实际情况多听取老师的意见,依照学习计划复习时,切记不要追求面面俱到。在备考的过程中一定要学会取舍,主抓重点和基础知识,对于自己的强势科目和提分较快的科目。根据制定好的计划复习,规避茫无目的的复习。
找一个有经验丰富的老师的指导下有针对性的进行复习,考题虽然年年不同,但是一定有规律可循,有些知识点是必考的。找准切入点,文化成绩一定不会差。

(作者: 来源:)