电镀槽电源的串联法如何应用
电镀槽的串联接法是镀槽中一槽之阳极与第二槽的阴极连接,第二槽的阳极与第三槽的阴极连接,依此类推,一槽的阴极与后一槽的阳极与电源相接。
电流通过镀槽的数量,是根据各槽的电阻而定,各槽内阴极面积相同时,则电流密度相同,阴极面积不相同时则电流密度也不同,沉积速度亦有差异,电路上的电流,处处相等。因为电流从电源一点起,除了通过这个电路之外,并无其它通路
镀锌厂
电镀槽电源的串联法如何应用
电镀槽的串联接法是镀槽中一槽之阳极与第二槽的阴极连接,第二槽的阳极与第三槽的阴极连接,依此类推,一槽的阴极与后一槽的阳极与电源相接。
电流通过镀槽的数量,是根据各槽的电阻而定,各槽内阴极面积相同时,则电流密度相同,阴极面积不相同时则电流密度也不同,沉积速度亦有差异,电路上的电流,处处相等。因为电流从电源一点起,除了通过这个电路之外,并无其它通路可以回到电源的另一点,因此电路上各点的电流必定相等。总电阻等于各分电阻之和,电阻串联后,总电阻增大。总电压等于各分路电压之和,所以在实际使用时,电源电压要比各分路电压高,才能使各镀槽得到额定的电压。这种接法的优点是节省设备。但缺点是必须在各槽内电极连接好后,电流才能通过,任何一极断开,电流都不能通过。而且要求电源供电电压较高,各镀槽溶液特性及镀件面积要相同,如果不相同则很难应用。
烧焦是
电镀的常见故障之一。“烧焦”是一个借用词,指工件阴极电流密度过大而超过工艺规范上限时镀层出现的非正常沉积。
不少论述工艺的文献中都有一个故障表,包括故障现象、可能原因及排除方法。然而实际大生产的情况非常复杂,各电镀厂的情况差异又很大,没有一个故障表能包罗万象。即使比较全的故障表,一个故障现象列有可能原因七八个,具体到实际,到底是哪个原因,还需逐一具体分析。死记硬背故障表未必能找到真正的原因。只有对故障现象的实质,以及为什么某种原因会造成故障的道理弄明白了,融会贯通,才能结合实验验证,找出具体原因。本讲将从道理上对引起烧焦故障的多种可能原因进行简单分析。
烧焦现象烧焦的共同点是:位置总出现在阴极电流密度很大的工件凸出或端头部位,决不会出现在工件深凹处的低电流密度区。但对于不同镀种或同一镀种的不同工艺,烧焦的外观表现不尽相同。例如:
对于氯化物微酸性镀锌,烧焦呈疏松黑色海绵状;而对于碱性锌酸盐镀锌,烧焦呈白灰色粗糙状,镀层附着力尚好。
对于青化镀铜,烧焦呈结晶不细致的砖红色;光亮酸铜的烧焦呈暗色海绵状疏松物;而对于多数无青碱铜,烧焦呈暗色较粗糙结晶。
对于镀镍,烧焦处镀层粗糙且常伴有脱皮现象。镀铬的烧焦呈灰色无光状。酸性光亮镀锡的烧焦则呈暗色雾状。
电镀件的结构设计要点:
1)基材采用电镀级ABS材料,ABS电镀后覆膜的附着力较好,同时价格也比较低廉。
2)塑件表面质量一定要非常好,电镀无法掩盖注射的一些缺陷,而且通常会使得这些缺陷更明显。
3)电镀件镀层厚度对配合尺寸的影响
电镀件的厚度按照理想的条件会控制在0.02mm左右,但是在实际的生产中,可能较多会有0.08mm的厚度,所以在有滑动配合的位置上,单边的间隙要控制在0.3mm以上,才能达到满意的效果,这是我们对电镀件配合时需要作的关注。
4)表面凸起控制在0.1~0.15mm/cm,尽量没有尖锐的边缘。
5)如果有盲孔的设计,盲孔的深度不超过孔径的一半,负责不要对孔的底部的色泽作要求。
6)要采用适合的壁厚防止变形,在1.5mm以上4mm以下,如果需要作的很薄的话,要在相应的位置作加强的结构来保证电镀的变形在可控的范围内。
电镀法填盲埋孔工艺
电解液电沉积填补盲孔已成为PCB行业的标准方法。当用这种方法填充盲孔时,电流密度应足够低,以抑制Cu2+在非微孔区的沉淀。对于高密度hdi线路板,要求盲孔可以任意填充而不影响细线。采用的
电镀工艺为全板电镀或图形电镀。在填充盲微孔时,采用不溶性磷铜阳极的垂直直流电镀生产线对电镀工艺参数进行优化,以保证表面铜的厚度分布均匀。
对于便携式电子产品和集成电路板,表面上的过孔通常不填充。采用不溶性磷铜阳极垂直电镀线(电镀电流为1.5)制备通孔。结果表明,采用垂直电镀线填充的过孔与采用电镀方法填充微盲孔的通孔性能相当,垂直电镀线填充盲孔的质量和表面铜厚度分布与电镀法填充的微盲孔的质量和表面铜厚度分布无明显差异。
在选择合适的电解液参数和整平添加剂的条件下,将原有的卧式直流电镀线改造成脉冲电镀(增强反向脉冲电流),已成为制造高密度互连板的新工艺。采用这种新工艺填充盲孔,镀层表面的凹陷可控制在10μM以内。
水平脉冲电镀生产线(强反向脉冲电流密度)所用镀液完全根据生产实际需要配制。镀液的可靠性和镀液在镀板表面能顺利进行。除镀层厚度分布均匀(2.5μm)外,凹坑应较小。当凹陷度达到±5μm时,为不合格品。
(作者: 来源:)