来自化工废水处理与淡水回收利用过程的高盐废水
	在化工废水处理过程中,废水的来源、组成都不相同,处理工艺方法也很多,但是都是以降低废水COD含量、后回收部分“淡”水为目的的。由此,在废水处理COD值达标之后,将会进一步采用反渗透等技术,回收部分“淡”水进行回用,以节约水资源。在整个工艺进程中,预处理系统、水处理药剂的加入及水的回用都导致废水中盐含量的增加和高盐水的形成。
废盐浓缩器定制
	来自化工废水处理与淡水回收利用过程的高盐废水
	在化工废水处理过程中,废水的来源、组成都不相同,处理工艺方法也很多,但是都是以降低废水COD含量、后回收部分“淡”水为目的的。由此,在废水处理COD值达标之后,将会进一步采用反渗透等技术,回收部分“淡”水进行回用,以节约水资源。在整个工艺进程中,预处理系统、水处理药剂的加入及水的回用都导致废水中盐含量的增加和高盐水的形成。
	许多工业废水都含有机/无机混合污染物,在某些废水中甚至含有不利于微生物生存或难生化降解的污染物。这样,有必要通过物化预处理提高废水的可生化性。废水经过预处理之后,虽然废水中的有毒类、难降解类含量会有所降低,但是各种添加剂的加入会使废水中盐类含量增加,形成含盐较高的废水。同时,脱盐预处理也会产生含盐量较高的高盐废水。
	一般地,降低废水COD的方法可分为物化法和生物法。其中,生物法具有成本低等优点,是处理方法。对于生化性较差的废水,采用物化-生化耦合工艺技术进行处理,已经成为当今难生化废水处理技术的发展趋势。近年来,各种用于废水处理的耐盐菌已经得到了深入的研究与利用,使得处理废水的盐含量有一定提高。虽然废水中的含盐量还是应有所控制、不宜过高,但是研究发现,当盐质量分数达到3.5%时,COD去除率可以达到60%;同时,废水中盐含量达到5%时,采用耐盐菌进行生化处理也是有效的。可见,随着废水处理技术和工艺的发展,特别是物化法和生物法工艺的联合应用与耐盐的研发与实践,都使得废水在COD达标处理的同时,排放水中的可溶性盐含量会有一定程度的提高,导致了含盐水的形成。 
	在、、染料等精细化工行业每年产生大量的废盐,以行业为例,每年排放废水3亿吨,其中含盐废水占8%,副产盐每年产生约100万吨。随着固体法的颁布,对化工行业固体危废管理越来越严格,对生产中含盐废水及回收固体盐加强了监管力度。废盐中的主要成分为无机盐,还有少量的水份以及不确定的有毒的有机物质,无法作为副产品直接使用,一般定义为危废。现阶段废盐的出路很狭窄,有的甚至是找不到出路,一直被认做危废搁置在仓库。对环境构成巨大威胁,因此废盐处理已经成为严重制约了行业发展。
	要打通工业废盐处理的出路,需要对废盐实现无害化处理。目前废盐的无害化处理方式主要焚烧法、热脱附法、微波裂解法。焚烧法可以摧毁废盐中的有机物,但是焚烧的温度达到1000℃以上,废盐软化至熔融状态,焚烧炉易板结,影响使用寿命。热脱附法将固体中的有机物转移到气相,但是该法需要消耗大量的热能,此外热脱附时间较长。微波裂解法加热均匀、占地面积小、设备不粘结。但是微波具有选择性加热的特性,对于介电常数低的物质,例如陶瓷、聚乙烯、聚等物质,不易吸收微波。废盐中有机物的介电常数较低,不易被加热,而氯化钠的介电常数为8,相对而言也较低,造成加热时间较长,能量损失较大,不利于有机物的裂解反应。

废盐处理系统,包括沿废盐水排出方向依次设置且相邻连接的废盐水中和装置、树脂回收装置、蒸发装置以及盐份回收装置,所述的盐份回收装置和蒸发装置之间设置有对废盐水中有机物进行分离的分离装置,所述分离装置的废盐水入口管道与盐份回收装置出口管道相连,分离装置的废盐水出口管道与蒸发装置的废盐水入口部相连。通过上述废盐水处理系统,可对废盐水进行有效的净化,可对废盐水中的残存老化树脂、甘油类有机物、盐份进行有效的回收利用,且蒸发装置、盐份回收装置、有机物分离装置之间构成一个小的循环单元,使得废盐水中的有机物和盐份都能够被有效的回收。
 

(作者: 来源:)