绝缘监测,母线绝缘监测和支路绝缘监测的区别
母线绝缘监测是由母线PT的开口三角线圈感应电压作为绝缘监测,支路绝缘监测是由小电流接地选线装置来选线的,选线装置从个各支路零序CT采集信号。
依托北京交通大学,由行业技术和高学历技术人员组建,主要致力于电力电子领域和监测类产品的研究、开发、生产、销售活动,主要从事新能源、船舶、轨道等行业的相关技术服务和成套方案解决。尤
绝缘监测仪器型号
绝缘监测,母线绝缘监测和支路绝缘监测的区别
母线绝缘监测是由母线PT的开口三角线圈感应电压作为绝缘监测,支路绝缘监测是由小电流接地选线装置来选线的,选线装置从个各支路零序CT采集信号。
依托北京交通大学,由行业技术和高学历技术人员组建,主要致力于电力电子领域和监测类产品的研究、开发、生产、销售活动,主要从事新能源、船舶、轨道等行业的相关技术服务和成套方案解决。尤其在电动汽车充电领域、光伏发电领域和船舶电源系统领域积累了广泛的知识和经验。具有母开关状态检测功能,在两段独立运行时,若母联开关闭合,能自动切换运行模式至两段并联检测,防止两同时检测对彼此构成干扰。

绝缘监测装置设计/选择
虽然电动汽车安全要求强标中已明确整车高压系统需附加绝缘监测装置(IMD,Insulation monitoring device),但是并未规定何种绝缘监测装置设计才是符合要求的。
总体而言,绝缘监测装置需暴露在电噪声的环境中稳定可靠的运行。目前,国内外绝缘监测装置工作模型一般采用电桥平衡法、信号注入法、电压法及其他衍生电路方案。IDM设计与选型时基于“择优而定”原则,从整车系统需求出发分解各方案对系统的适用性,以此评估供应商或方案优势。兆欧表的接线柱共有三个:一个为“L”即线端,一个“E”即为地端,再一个“G”即屏蔽端(也叫保护环),一般被测绝缘电阻都接在“L”“E”端之间,但当被测绝缘体表面漏电严重时,必须将被测物的屏蔽环或不须测量的部分与“G”端相连接。
评价IDM设计选型方案,基于上图所示,可作要点评估,以期优化选择。对于整车系统而言,IDM对高压平台的兼容性、测试响应时间、工作可靠性以及诊断时效性尤为重要。
关于设计选型因素评估说明举例:
1)在EV/HEV电气平台化架构推进下,不同系统/部件总配置变化,IDM硬件无法具有适配性,则产品就严重缺乏模块化的条件;
2)诊断电路对真实故障条件的响应时间是设计IDM时需要考虑的关键参数之一,如某些信号注入方案,脉冲信号会受到Y电容的RC充电特性影响,需要设置足够的固定时间,以此来避免Y电容对绝缘检测的影响,而过长的检测时间对及时响应故障处理不利。
3)IDM可诊断任何线路,包含AC线路(车载DCAC并不隔离设计),和底盘接地之间的泄露故障,但若IDM无法测量AC端接地故障,则整车系统可额外附加用于AC线路的绝缘监测功能,比如MCU控制器增设接地故障诊断。
另外,建立测试用例,检测IDM实际情况,这也是系统验证的一种有效途径。
电动汽车绝缘监测装置的推荐和介绍
充电桩绝缘监测的发展前景是非常宽广的,在能源危机和环境危机严重的大背景下,在我国积极推进新能源汽车的应用与发展下,近年来电动汽车发展非常迅速,市场占有份额越来越大,2010年电动汽车作为新能源汽车,销售只有1663辆,而2015销售接近35万辆,而“十三五”规划是要在2020年新能源汽车达到500万辆,伴随电动汽车的迅猛发展,它的伴随品充电桩同样的势不可挡,但与新能源汽车的爆发相比,充电基础设施建设远远落后。截至2015年底,国内已建成的充换电站3600座,公共充电桩4.9万个,车桩比大约为9:1,按照新能源汽车与充电桩1:1的标准配臵来看,充电基础设施建设缺口巨大。根据发改委印发的《电动汽车充电基础设施发展指南(2015-2020)》,到2020年预计布局充换电站超过1.2万座,充电桩超过500万套,市场规模超过千亿,其中直流充电桩50万套,几乎每套都要按照GB/T 18487.1-2015的要求配备绝缘监测装置。因此,至2020年,充电桩直流绝缘监测装置累计市场份额将近7千万元。(2)对可能感应出高压电的设备,必须消除这种可能性后,才能进行测量。
共元科技,集聚智慧与才能的产品,,!
(作者: 来源:)