粮食烘干风机利用模拟方法分析了级导叶结构形式对某两级动叶可调轴流风机性能的影响,表明长短复合导叶对提升轴流风机气
动性能方面好于单一长度叶片式导叶。粮食烘干风机在流固耦合模拟研究方面,利用CFX 和Ansys 对离心风机叶轮的模拟表明,风机气动性能基本不变,而较大变形量减少2. 5%,较大等效应力增大3. 6%。失速工况下叶轮的静力特性,指出气动力
粮食烘干风机
粮食烘干风机利用模拟方法分析了级导叶结构形式对某两级动叶可调轴流风机性能的影响,表明长短复合导叶对提升轴流风机气
动性能方面好于单一长度叶片式导叶。粮食烘干风机在流固耦合模拟研究方面,利用CFX 和Ansys 对离心风机叶轮的模拟表明,风机气动性能基本不变,而较大变形量减少2. 5%,较大等效应力增大3. 6%。失速工况下叶轮的静力特性,指出气动力载荷对叶轮的总变形量有显著的影响,对叶轮等效应力分布的影响较小,粮食烘干风机旋转工作时的应力及总应变,验证了在流固耦合作用下风机工作的强度要求。Dhopade模拟了低周疲劳与高周疲劳联合作用对燃气轮机叶片结构与气动性能的影响。在考虑叶片和流域相互耦合状态下,对大型轴流风机叶片的气动弹性的模拟表明,考虑气动弹性的较大应力几乎是不考虑气动弹性的较大应力的两倍,由此证明在叶片安全性评估方面考虑气动弹性的必要性。综上所述,目前对于轴流风机的导叶数目改变研究只关注其气动性能,而对于叶轮静力结构和振动情况研究较少。由于粮食烘干风机涡流的产生和脱落,叶片非工作面辐射的能量基本消失,因为工作面内的气流通过孔流向非工作面,非工作面内的气流获得能量克服粘性力,抑制了产生和脱落。
因此,本文研究对象为某电厂660 MW 机组配套的动叶可调轴流一次风机,借助Fluent 软件对其内部流场进行数值模拟,并借助Workbench 流固耦合模块对叶片进行静力分析和预应力下的模态分析,对导叶数目改变前后的叶轮安全性进行评估,为风机生产和改造提供参考依据。对策:控制空气预热器出口排烟温度不制造厂规定的较低温度,防止低温腐蚀和运行空气预热器冷端部件堵塞。
分析了粮食烘干风机失速的原因。分析了引风机和一次风机的不同失速原因,并分别给出了相应的处理方法。本文总结了近年来轴流风机失速、喘振的情况及相关原因。指出除系统阻力过大外,风机本身的制造不符合标准,如动叶开度不一致或叶顶间隙过大,也可能是造成失速的常见原因。在数值模拟中,以集流器入口和扩压器的出口作为整个计算域进出口,边界条件为进口速度和自由流出。通过山东关西风机的实践和文献总结,
粮食烘干风机失速的主要原因是:
(1)风机选型与烟气系统阻力不匹配,这一般是由于风压选择参数太小,风机阻力增大过大造成的。环境保护改造后的阻力、空气预热器堵塞或挡板门未全开等,风机实际运行点离失速线太近。
(2)风机在制造或安装上不符合标准,如叶顶间隙过大、动叶角度不一致等制造原因,导致实际失速线下移,使工作点过于靠近失速线。
(3)粮食烘干风机进口管路布置不合理,导致引风机进口速度分布不均(总压畸变),导致风机实际失速线向下移动,导致风机提前失速。通过以往的文献研究,发现在压缩机领域,叶尖间隙与失速裕度的关系得到了充分的研究。在电站风机领域,现有文献仅定性地讨论了叶尖间隙对失速的影响,没有建立叶尖间隙超调量与风机性能和失速压力之间的定量关系。结合风机大修叶片叶尖间隙数据,提出了一次风机叶尖间隙与风机性能和失速压力的定量关系。通常,在测量水平、垂直和轴向位置的较大振动位置时,应考虑到振动源。
液压润滑站故障分析及处理措施。液压润滑站由油箱、油泵装置、滤油器、冷却器、仪表、管路、阀门等组成。油站漏油或调节油压不稳定,不仅影响风机的调节性能,而且危及粮食烘干风机的安全。容易发生的主要故障有:
1)供油压力达不到要求:主要原因是单向阀泄漏,油流短路,导致压力无法维持,应检查并清洗相应的单向阀;
2)机油温度偏高:主要原因是温度控制阀的合理选择,导致冷却器不能发挥应有的作用,冷却效果差,油温高。当出现这种问题时,可以检查温控阀的参数,一般应为29-41摄氏度。
3)接头漏油:由于导管架安装不到位,应按要求预缩。管头应伸出5-10 mm,端面应平直。弯头加折板式消声器的组合消声结构,不仅能够有效的改变气流流通方向,增加通道长度,提高空气动力性噪声的消声量,而且节约空间,组合形式灵活,具有广泛的应用前景。风机运行中常见问题的处理措施(1)风机运行中的振动问题。振动是风机运行中固有的,只要粮食烘干风机旋转的机械会产生振动。如果振动控制在一定的标准范围内,并能安全地用于风机,则振动可视为正常运行现象。但当振动达到一定程度时,会对风机造成一定的损坏,甚至造成严重的安全事故。风机运行中振动测量一般有两种形式:振动速度(V),用mm/s表示,振动振幅(S),用mm表示。根据,振动是以振动速度来评价的,但有些仍然采用振动幅度评价法,这两种方法都可以用振动测量仪来测量。



以矿井对旋轴流局部通风机为研究对象,进行了风机叶片的穿孔设计,建立了粮食烘干风机叶片穿孔前后风机的总体模型,并进行了稳态、非稳态模拟和噪声预测。结果表明,叶片穿孔能有效地抑制叶片非工作面叶尖泄漏和涡流的产生和脱落,从而降低了两级叶轮通过频率的声功率级和声压值。宽带噪声是穿孔后的主要噪声源。对旋轴流风机存在振动大、噪声大的问题。整个粮食烘干风机通风段累计耗电量(总耗电量)为2428kwh,单位耗电量(能耗)为0。由于煤矿工作的性质,风机必须始终处于运行状态,以保证井下有足够的新鲜空气。持续的粮食烘干风机噪音会让地下工作者感到分心,无法集中注意力。严重的噪音会对人的听力、视力、神经系统等造成伤害。较大的振动和噪声也会影响风机结构的稳定性,降低其使用寿命。研究粮食烘干风机噪声产生的原因及其防治方法,对提高井下工作环境质量,保证矿井安全生产具有重要意义。方开祥模拟了一台小型散热风扇的流场,设计了叶片的穿孔。穿孔后,风