丁腈胶乳胶膜的断裂伸长率则随着吸收剂量的增加面呈下降趋势。 3电子束辐照丁腈胶乳乳液与敏化剂n-BA混合液,成膜后的拉伸强度在吸收剂量为60kGy, n-BA加入量为1phr时zui高可达到3.73MPa。在敏化剂为n-BA时,吸收剂量在50-60kGy时拉伸强度能达到一个较高的水平。通过将离子液体(IL)和高lv酸锂加入丁腈胶乳(NBR)或其衍生物基体中制备了凝胶聚合物电解质(G
羧基丁腈胶乳采购

丁腈胶乳胶膜的断裂伸长率则随着吸收剂量的增加面呈下降趋势。 3电子束辐照丁腈胶乳乳液与敏化剂n-BA混合液,成膜后的拉伸强度在吸收剂量为60kGy, n-BA加入量为1phr时zui高可达到3.73MPa。在敏化剂为n-BA时,吸收剂量在50-60kGy时拉伸强度能达到一个较高的水平。通过将离子液体(IL)和高lv酸锂加入丁腈胶乳(NBR)或其衍生物基体中制备了凝胶聚合物电解质(GPE),并分别从离子液体改性、丁腈胶乳基体改性和化学交联方式等角度进行设计,研究了离子液体、聚合物基体以及交联作用对GPE的性能的影响。电子束辐照丁腈胶乳乳液与敏化剂TMPTMA的混合液,成膜后的拉伸强度在吸收剂量为50kGy, TMPTMA加入量为2phr时zui高可达到3.62MPa。吸收剂量在50-70kGy的范围丁腈胶乳的拉伸强度提高比较明显。

研究表明,直接的熔体共混法制备的石墨/丁腈胶乳复合材料中,膨胀石墨的疏松结构未能在双辊的强烈剪切力作用下分散为均匀的细小颗粒,而是有少量颗粒分散到较小的尺度,但大部分的分散相片层的直径仍然在100μm左右,厚度约几个微米。超细石墨粒径小,对橡胶力学性能的补强其效果好。在相同的填充份数下,超细石墨填充的丁腈胶乳硫化胶是四种胶料中300%定伸应力和拉伸强度zui高的,而且扯断yong久变形小。辐照强化了乳胶粒子与石墨片之间的界面结合,形成胶乳粒子包覆石墨片的核-壳结构,进而提高石墨片在基体中分散均匀性,并使GnPs-XNBR复合材料的热稳定性和介电常数提高,导电性和介电损耗降低。增加石墨的用量可以提高丁腈胶乳硫化胶的摩擦学性能。在60 phr填充量下,大粒径分散的石墨(EG)填充的丁腈胶乳其摩擦系数相对要低,而小粒径分散的石墨(超细石墨)填充的丁腈胶乳则具有zui小的磨损率。

橡胶是具有可逆形变的高弹性材料,主要用作轮胎、胶管、密封材料等,广泛用于国民经济各行业。利用物理或化学方法改善橡胶材料在某些方面的性能,甚至赋予功能是目前高分子科学研究的前沿领域。通过甲酸和双yang水将液体端羧基丁腈胶乳(CTBN)中的双键氧化,制备液体环氧化端羧基丁腈胶乳(ECTBN),并将ECTBN用于环氧树脂增韧改性的研究。本文选取在橡胶改性方面鲜有报道的聚四氟乙烯分散液来改性丁ben橡胶和丁腈胶乳,以期通过氟元素的引入,改善橡胶的耐候性、耐腐蚀性、耐沾污性、耐溶剂性、耐高温性等,提高丁ben橡胶、丁腈胶乳的性能。本文主体分为两部分: 第1部分,选取聚四氟乙烯分散液,采用乳液共沉法,研究了其对丁ben橡胶性能的影响。
(作者: 来源:)