车牌的定位与校正
本章主要描述的是对已有车牌定位方法的研究,了解它们的算法原理及其优缺点,并提出了一种效果更好适用范围更广的车牌识别系统方法,即将Mean Shift算法运用到车牌识别系统,然后在此基础上对车牌进行校正。
图像的对比度不足是图像处理的过程中经常会遇到的问题。主要的原因是在获取车牌图像时受外界环境的影响。对比度不足的图像会影响到图像的后续处理效果,所以
车牌识别系统
车牌的定位与校正
本章主要描述的是对已有车牌定位方法的研究,了解它们的算法原理及其优缺点,并提出了一种效果更好适用范围更广的车牌识别系统方法,即将Mean Shift算法运用到车牌识别系统,然后在此基础上对车牌进行校正。
图像的对比度不足是图像处理的过程中经常会遇到的问题。主要的原因是在获取车牌图像时受外界环境的影响。对比度不足的图像会影响到图像的后续处理效果,所以,一般情况下,在进行图像处理前会使用灰度变换的方法来对图像进行对比度增强处理,以达到改善视觉效果的目的。一个识别率很高的系统,如果需要几秒钟,甚至几分钟才能识别出结果,那么这个系统就会因为满足不了实际应用中的实时要求而毫无实用意义。
车牌定位
车牌定位是指根据车牌图像的区域特征来将车牌在图像中的部分从背景图像中分离开来,由于车牌区域在图像特征主要包括颜色和形状,车牌区域的颜色一般为蓝色、黄色或白色,它们与图像的背景颜色存在较大的差异。车牌的形状一般为矩形。而车牌号在外形和排列上都存在规律性。它不仅仅是计算机视觉与模式识别技术重要的研究话题,更是交通管理智能化的关键技术之一。车牌定位技术就是将上述特征经过一定的变换与处理后,使之能作为车牌定位的依据。
汽车牌照自动识别系统 是智能交通系统的重要组成部分,是高科技的公路交通监控管理系统的主要功能模块之一。它在传统的交通监控技术的基础上,引入了数字摄像技术和计算机信息管理技术,采用的图像处理、模式识别和人工智能技术,通过对车辆图像的采集和处理,获得车辆的数字化信息,从而达到更高的智能化管理水平。它运用车牌是车辆身份的标识的思想概念来智能识别和统计车辆,涉及图像的处理、理解和记录等技术。有些需要供应商改进系统以改进,有些可以通过增强管理来改进,有些可能涉及修改车辆管理方法。其中车牌识别又可以依据针对的方向不同可以分为车辆图片识别,和视频车牌号识别,其中车辆图片识别主要针对单张图片进行抓拍处理,识别图片中的车牌号码,而视频车牌号识别则主要应用于高速公路收费,交通治安,闯红灯系统,小区或是停车场的监控系统中,两项程序都可以清晰的bu捉图像
(作者: 来源:)