金属表面改性技术分类
表面改性技术的定义:表面改性是指采用某种工艺手段是材料表面或得与基体材料的组织结构、性能不同的一种技术。
技术优势:材料经过表面改性处理后,既能发挥基体材料的力学性能,又能使材料表面获得各种特殊性能;表面改性技术可以掩盖基体材料的表面缺陷,延长材料和构件的使用寿命;节约稀有 贵 重金 属材料,改善环境。
表面改性技术的分类:金属表面形变强化、表
粉末冶金材料
金属表面改性技术分类
表面改性技术的定义:表面改性是指采用某种工艺手段是材料表面或得与基体材料的组织结构、性能不同的一种技术。
技术优势:材料经过表面改性处理后,既能发挥基体材料的力学性能,又能使材料表面获得各种特殊性能;表面改性技术可以掩盖基体材料的表面缺陷,延长材料和构件的使用寿命;节约稀有 贵 重金 属材料,改善环境。
表面改性技术的分类:金属表面形变强化、表面热处理、金属表面化学热处理、离子束表面扩渗处理、高能束表面处理、离子注入表面改性。
金属表面形变强化
表面形变强化技术中常用的有喷丸、滚压、豪克能技术。喷丸使用高压或压缩空气作动力,比较灵活但动力消耗大;滚压大家都很清楚,结合金属冷做硬化的原理提升工件的硬度和性;豪克能技术是一项的金属形变强化技术,采用30KHZ以上的振动频率的高频振动以及一定数值的静压力,形成对工件的强化加工,具有晶粒细化至纳米级、硬度性提升、同时工件表面Ra达0.2以下的显著效果;MIM技术是目前金属零部件成型科学的精净成型技术,其特点在于成本低,性能优异,可根据不同需求灵活调整各项性能指数,应用领域非常广泛。
表面热处理:仅对工件表面进行加热、冷却的工艺,从而改变表层组织和性能而不改变成分的一种工艺。
金属表面化学热处理:利用元素的扩散性,使金属元素深入金属表层的一种热处理工艺。
离子束表面处理:用一定能量的离子轰击固体表面,使固体近表面层物理、化学性质发生变化的工艺技术,包括离子注入、离子束混合、离子溅射、离子刻蚀等技术。离子注入是将某种离子“打进”固体,改变固体近表面层的化学成分和固体结构。离子注入技术用于半导体掺杂和金属和其他材料的表面改性。离子束混合是用离子轰击镀有多层薄膜的金属,使各层原子因离子碰撞发生互混。这样能防止低熔点组元的气化或分解,分批加入金属粉可防止降温太快而导致的扭矩急增,减少设备损失。
利用激光扫描过程中材料自身的组织结构变化或引入其他材料实现工件表面性能的改善,该技术能选择性地处理工件表面,有利于在工件整体保持足够的韧性和强度的同时,表面获得较高的、特定的使用性能,如、耐蚀和kang疲 劳、kang氧化等。
电子束使金属材料表面很快上升到奥氏体相变退度(熔化温度),持续一段时间后电子束停止轰击.热t很快向冷的荃体金属扩散,使加热表面自行淬火,其组织转变为马氏体,表面硬度显著提离。



粉末冶金生胚强度
粉末冶金生胚强度的概念粉末冶金生坯强度是指冷压的粉末压坯的机械强度。粉末冶金零件生坯具有适当的强度是必要的,以便压坯从阴模中脱出和将其运送到烧结炉而不会损坏。生坯强度取决于金属粉末的种类与施加的压力。软金属的粉末、不规则颗粒形状或多孔性颗粒结构的粉末都具有较高的生坯强度。对于软金属,用较低的压力即可生产出能够进行搬运的压坯。较硬的粉末则需要较高的压力。其生产工艺流程为:电镀工艺过程一般包括电镀前预处理﹐电镀及镀后处理(钝化处理)三个阶段。
要理解粉末冶金生坯强度,就必须知道哪种力使金属之间产生黏着。当使清洁的金属表面相互接触时,由于它们之间的接触面积小,从而它们之间的黏着力小。施加压力使接触面积增大,不管颗粒形状和表面粗糙度如何,这种接触面积大体上正比于施加的压力。对粉末冶金生坯强度的这种解释就将重点放在了建立颗粒之间原子与原子的金属接触。如上所述,与球形颗粒粉末相比,不规则形状颗粒压制的压坯具有较高的生坯强度。这种较高的强度来自于粉末冶金压坯中不规则形状颗粒之间的相互联锁。对相互联锁现象的解释仍然有争议,但看起来可能是由于在由不规则颗粒压制的压坯中,在相当大程度上,相邻颗粒之间形成了较好的原子接触。☆组合为了节省库存与组装费用,当讲多个零件团结为一个零件时,可以受益。
粉末冶金工艺很适用于大批量生产这类的零件。它可以为各种形状复杂的零件生产设计且不浪费材料。不过,制造铁框在技术上并非易事。在早期开发中,使用传统润滑剂,诸如硬脂酸锌与EBS腊等进行过生产试验,生坯废品率高达50%。目前,有通过用温压提高生坯密度和通过采用模壁润滑减少或消除混合粉中的润滑剂的方法来提高生坯强度。机械抛光机械抛光是靠切削、材料外表塑性变形去掉被抛光后的凸部而得到平滑面的抛光方式,一般运用油石条、羊毛轮、砂纸等,以手工操作为主,特别零件如回转体外表,可运用转台等辅佐工具,外表质量要求高的可采取超精研抛的方式。


科学家3D打印出1颗完整的小心脏
据报道,以色列科学家运用3D打印技术,成功制造出樱桃大小的心脏,期待有朝一日能印出人类的心脏,造福等待换心的人。据以色列特拉维夫大学(Tel Aviv University)的研究团队日前在Advanced Science期刊上发表研究成果显示,他们成功运用3D打印技术印出樱桃大小的心脏,跟兔子的心脏一样大,而且不只是结构,还包括了细胞、血管、心室等,开创医用科技首例。化学抛光是让材料在化学介质中外表宏观凸出的部分较凹部分优先溶解,从而得到平滑面。
用于打印的原料是人类组织,科学家从受试者身上切下一块脂肪组织,然后把细胞物质分离出来,经过重编程后成为多功能性gan细胞,再分化为心脏细胞或内皮细胞。
同时,胶原蛋白和糖蛋白等细胞外基质(Extracellular Matrix;ECM)经处理后成为水凝胶,并和分化后的细胞混合,拿来当作3D打印的“墨水”。
zui重要的是,由于打印的原料取自接受移植者自己本身,故可以避免排斥反应。
科学家的下一个挑战,是教打印出来的心脏跟真的心脏一样跳动。它目前能做到“收缩”,但是还无法完成“泵血功能”的作用。,科学家也还需要研究怎样扩大规模,才有足够的细胞组织做出真正人类大小的心脏。
该团队表示会先尝试把打印的心脏移植到动物身上,下一步才是人类。他们希望未来10年内,全世界的ding尖医院里都可以有一台3D打印机,让qi官打印得以成真、普及。


-->