阐述压力容器焊接工艺中防止气孔的主要方法
1、工艺措施 (1)消除各种气体的来源。在压力容器焊接过程中,因为工况或者原料板材、辅助材料、操作手法或者电流、电压、焊接速度等原因会造成焊缝组织内出现气孔现象发生,下面就简单阐述:1、可分为两种类型,反应型气孔,CO,及溶解型气孔,H2、N2。去除氧化膜或铁锈,按规定烘干焊条、焊剂并合理保存,去除保护气体中的氧、氢、
压力容器厂家
阐述压力容器焊接工艺中防止气孔的主要方法
1、工艺措施 (1)消除各种气体的来源。在压力容器焊接过程中,因为工况或者原料板材、辅助材料、操作手法或者电流、电压、焊接速度等原因会造成焊缝组织内出现气孔现象发生,下面就简单阐述:1、可分为两种类型,反应型气孔,CO,及溶解型气孔,H2、N2。去除氧化膜或铁锈,按规定烘干焊条、焊剂并合理保存,去除保护气体中的氧、氢、氮。(2)加强保护。焊条药皮不要脱落,焊剂或保护气体给送不能中断,电弧不得任意拉长,装配间隙不能过大,用低氢型电焊条要用短弧、直流反接。 (3)正确掌握焊接操作工艺。创造熔池中气体浮出的有利条件,必要时可预热。
2、冶金措施选用与母材金属相适应的焊条焊剂。压力容器按安装方式分为固定式压力容器和移动式压力容器,固定式压力容器是指有固定安装和使用地点,工艺条件和操作人员也较固定的压力容器。(1)药皮焊剂中的氧化剂和脱氧剂配合适当。在焊接低碳钢时适当增加氧化性可以减少由氢气所造成的气孔;而焊接高碳钢时适当增加脱氧性可以减少由CO即产生的气孔。 (2)在焊剂中适当的增加合金剂及造渣剂可以减少气孔,如适当的加入SiO2、MnO、MgO可以减少气孔 (3)调节焊剂的粘度,适当的加入一些CaF3或TiO2是降低粘度的有效方法,这样有利于焊缝中气体的逸出。

压力容器粒状贝氏体Bg和M-A组元的形成原因及其对焊缝性能的影响
1块状铁素体形成之后,待转变的富碳奥氏体呈岛状分布在块状铁素体之中。
2在一定的合金成分和冷却速度下,这些富碳的奥氏体岛可转变为富碳马氏体和残余奥氏体,称为M-A组元。
3在块状铁素体上M-A组元以粒状分布时,即称“粒状贝氏体”,简称Bg。
4由于粒状贝氏体的奥氏体岛,可有不同的转变或分解。当岛内在冷却过程中部分地转变为马氏体(形成M-A组元)时,则此时韧性下降;而岛内奥氏体也可能在较缓冷却时部分的分解为铁素体和渗碳体并有残余奥氏体,则此时的韧性上升。
6.1.2 壁厚测定的位置应当有代表性,有足够的测点数。测定后标图记录,对异常测厚点做详细标记。重点检测易腐蚀、易冲蚀、制造工艺减薄、变形、修磨后的部位及壁厚小于原设计壁厚的部位。
厚度测点部位及数量:
a)筒体每筒节不少于4点,封头每块板不少于4点;
b)与设备本体连接的接管应逐根测厚,重点测量排放(疏水、排污)接管的厚度;
c)对设备超温及外观检查发现的怀疑部位增加测厚点。
d)壁厚测定时,如果发现母材存在分层缺陷,应当增加测点或者采用超声检测,查明分层分布情况以及与母材表面的倾斜度,同时作图记录。
(作者: 来源:)