直接法:基于图像的车牌识别技术属于直接法,是一种无源型汽车牌照智能识别方法,能够在无任何发送车牌信号的车载发射设备情况下,对运动状态车辆或静止状态车辆的车牌号码进行非接触性信息采集并实时智能识别。与间接法识别系统相比,首先,这种系统节省了设备安置及大量资金,从而提高了经济效益;其次,由于采用了的计算机应用技术,所以可提高识别速度,较好地解决实时性问题;再次,它是根据图像进行
智能车牌识别
直接法:基于图像的车牌识别技术属于直接法,是一种无源型汽车牌照智能识别方法,能够在无任何发送车牌信号的车载发射设备情况下,对运动状态车辆或静止状态车辆的车牌号码进行非接触性信息采集并实时智能识别。与间接法识别系统相比,首先,这种系统节省了设备安置及大量资金,从而提高了经济效益;其次,由于采用了的计算机应用技术,所以可提高识别速度,较好地解决实时性问题;再次,它是根据图像进行识别,所以通过人的参与可以解决系统中的识别错误,而其他方法是难以与人交互的。

人工神经网络技术。近几年来,计算机及相关技术发达的一些开始探讨用人工神经网络技术解决车牌自动识别问题,例如1994年M.M.M.FANHY等就成功地运用了BAM神经网络方法对车牌上的字符进行自动识别,BAM神经网络是由相同神经元构成的双向联想式单层网络,每一个字符模板对应着个BAM矩阵,通过与车牌上的字符比较,识别出正确的车牌号码。这种采用BAM神经网络方法的缺点是无映解决识别系统存储容量和处理速度相矛盾的问题。

车牌识别系统确实实测
几乎每家都宣称拥有高辨识率,但为了避免事后因为双方对产品认知有差异,而将运作不良的责任互相推托,用户在采购车牌辨识系统时,不妨要求实地测试,而且测试时间超过两个礼拜,比较能判断辨识结果是否“言过其实”。因为多变的环境,两个礼拜应该可以对于场域可能影响辨识率的情形,大约掌握了八成,如果只是测、甚至几个小时,是无法了解的。
另外,车牌辨识既然是“系统”,当中软硬件架构的好坏,当然会影响“呈现的结果”。至于什么样的软件跟硬件,适合什么样的环境,这就必须因环境而异,因为不同的应用环境,对于辨识率的要求未必相同,而这就必须靠经验累积。尽管市场上有林林总总的车牌辨识系统,用对产品与架构,可以省去很多的冤枉钱跟时间,但更重要的是,工程商与系统整合商需要多方配合及了解,而不是一味的只看重某厂牌比较好、比较便宜,凡事货比三家不吃亏。
此外,车牌辨识系统能否发挥效用,除了软件技术之外,与摄影机及现场施工能力,也有很大的关系。使用者可要求厂商至现场勘查后,提出建置规划方案,先评估应该架设的地点、摄影机架设角度、是否需要架设辅助光源等,再提出报价,藉由这些动作,除了得以事先评估业者的能力,用户本身也可以达到产品学习及教育训练,日后管理时,会更清楚知道该产品的使用限制及相关因应措施。
(作者: 来源:)