直燃式焚烧炉的设计是依废气风量,VOCs浓度及所需知破坏去除效率而定。操作时含VOCs的废气用系统风机导入系统内的换热器,废气经由换热器管侧而被加热后,再通过燃烧器,这时废气已被加热至催化分解温度(650~1000℃),并且有足够的留置时间(0.5~2.0秒)。这时会发生热反应,而VOCs被分解为二氧化碳及水气。之后此一热且经净化气体进入换热器之壳侧将管侧(tubeside)
天津焚烧炉定做
直燃式焚烧炉的设计是依废气风量,VOCs浓度及所需知破坏去除效率而定。操作时含VOCs的废气用系统风机导入系统内的换热器,废气经由换热器管侧而被加热后,再通过燃烧器,这时废气已被加热至催化分解温度(650~1000℃),并且有足够的留置时间(0.5~2.0秒)。这时会发生热反应,而VOCs被分解为二氧化碳及水气。之后此一热且经净化气体进入换热器之壳侧将管侧(tubeside)未经处理的VOC废气加热,此换热器会减少能源的消耗(甚至于某适当的VOCs浓度以上时便不需额外的燃料),后,净化后的气体从烟囱排到大气中。
浓缩转轮/焚烧炉系统吸附大风量低浓度挥发性有机化合物(VOCs)。再把脱附后小风量高浓度废气导入焚烧炉予以分解净化。大风量低浓度的VOCs废气,通过一个由沸石为吸附材料的转轮,VOCs经被转轮吸附区的沸石所吸附后净化的气体经烟囱排到大气,再于脱附区中用180℃~200℃的小量热空气,将VOCs予以脱附。如此一高浓度小风量的脱附废气在导入焚烧炉中予以分解为二氧化及水气,净化的气体经烟囱排到大气。

二室RTO工作原理
在开工时先将新鲜空气代替有机废气,借燃烧器将蓄热室加热到一定温度。由于蓄热体具有极高的储热性能,所以从一个冷的RTO加热到一定高的温度,并且还要达到正常温度分布,需要一定的时间。
正常工作时,其中一个蓄热室已在个操作循环中存储了热量,有机废气首先从底部进入该蓄热室,废气通过蓄热体床层被预热到接近燃烧时温度,而蓄热体同时逐渐被冷却。
预热后的废气进入顶部燃烧室,在燃烧室中有机物被氧化后,即作为高温净化气进入另一个蓄热室;此时,净化气的热量传给蓄热体,蓄热体床层逐渐被加热,而净化气则被冷却后排出。当被冷却的蓄热体冷却到尚可允许的温度水平时,就应切换气流的方向,即完成个循环。
切换流向后,有机废气进入已被加热过的蓄热室,反应后的净化气则将热量传给上一循环被冷却的蓄热室,如上所述,完成第二个循环。
蓄热式热氧化器原理简介
蓄热式热氧化器(简称RTO),是国际上一种为有效的VOCs治理技术装置,主要用于处理中低浓度挥发性有机废气。其基本原理是VOCs与O2发生氧化反应生成CO2和H2O,化学方程式如式(1)。
aCxHyOz+bO2→cCO2+dH2O(1)
热氧化器中加入蓄热体,储存热量预热VOCs废气,对预热后的VOCs废气进行热氧化处理。随着蓄热材料的发展,目前蓄热体的热回收率已能达到95%以上,具有显著的节能效果。当VOCs浓度较高时,余热可做二次回收,因而RTO广泛应用于石油、化工、涂装、涂布、等行业。
典型的两床式RTO如图1。RTO启动前先通过燃烧器对燃烧室及填料床预热;预热完成后,含有VOCs的尾气入1#填料床预热,然后通过燃烧室,在燃烧室内VOCs充分氧化放热;氧化完成后洁净的气体通过2#填料床冷却,并将热量传递给2#陶瓷床,随后洁净的气体排入大气,此过程为半个周期。半个周期结束后,阀门切换,含有VOCs的气体先通过2#填料床预热,然后在燃烧室氧化放热,再通过1#填料床进行热交换放热,放热完成后,洁净的气体排入大气,至此完成一个周期循环。
(作者: 来源:)