厌氧生物处理发酵阶段
发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
在这一阶段,上述小分子的化合物发酵细l菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。发酵细l菌绝大多数是严格厌氧l菌,但通常有约1%的兼性厌氧l
EGSB厌氧罐调试
厌氧生物处理发酵阶段
发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
在这一阶段,上述小分子的化合物发酵细l菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。发酵细l菌绝大多数是严格厌氧l菌,但通常有约1%的兼性厌氧l菌存在于厌氧环境中,这些兼性厌氧l菌能够起到保护像碳烷菌这样的严格厌氧l菌免受氧的损害与抑制。因此,通过优化复合絮凝剂来提高处理效率并降低成本成为该领域的重要研究内容。这一阶段的主要产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨、硫化l氢等,产物的组成取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此,未酸化废水厌氧处理时产生更多的剩余污泥。
在厌氧降解过程中,酸化细l菌对酸的耐受力必须加以考虑。酸化过程pH下降到4时能可以进行。但是产碳烷过程,因此pH值的下降将会减少碳烷的生成和氢的消耗,并进一步引起酸化末端产物组成的改变。
厌氧塔工作原理
经过调节pH和温度的废水首入反应器底部的混合区,并与来自外循环回流的泥水混合液充分混合后进入颗粒污泥膨胀床区进行COD生化降解,此处的COD容积负荷很高,大部分进水COD在此处被降解,产生大量沼气。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物上升,经过填料区的降解后,混合液至反应器顶部的三相分离器,沼气在该处与泥水分离后并被导出处理系统。泥水混合物则沿挡泥板下降至反应器底部的混合区,并于进水充分混合后再次进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,外循环回流量可达进水流量的0.5-10倍。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物上升,经过填料区的降解后,混合液至反应器顶部的三相分离器,沼气在该处与泥水分离后并被导出处理系统。经膨胀床处理后的废水除一部分参与循环外,其余污水继续上升,污水进入填料区进行剩余COD降解与产沼气过程,提高和保证了出水水质。由于大部分COD已经被降解,所以填料区的COD负荷较低,产气量也较小。该处产生的沼气也是由三相分离器收集,通过集气管导出处理系统。经过填料区处理后的废水经三相分离器作用后,上清液经出水区排走,颗粒污泥则返回污泥床。
工业废水处理工程的运营现状
“解决水资源挑战必须从工业用水着手,通过减少水资源消耗、增强水资源再利用和循环使用,从生产全过程、全方l位提高综合用水效率,降低企业‘水足迹’。
近年来,随着《人民共和国水污染防治(2017修订)》等一系列法规政策的出台和实施,提高用水效率,实现节水和废水的有效再利用,废水减排和资源化已成为必然的选择。在工业废水零排放领域,寻求处理效果更好、工艺稳定性更强、运行费用更低的废水处理工艺,已成为当前工业企业发展的迫切需求。在工业废水零排放领域,寻求处理效果更好、工艺稳定性更强、运行费用更低的废水处理工艺,已成为当前工业企业发展的迫切需求。
厌氧生物处理的基本原理
厌氧生物处理,是利用厌氧微生物的代谢特性,将废水中有机物进行还原,同时产生碳烷气体的一种经济而有效的处理技术。废水厌氧生物处理技术(厌氧消化),是在在无分子氧条件下,通过厌氧微生物的作用,将废水中的各种复杂有机物分解转化成碳烷和二氧化碳等。(3)UBF反应器具有很高的容积负荷,一般为10~20kgCODCr/(m3·d),l高可达30kgCODcr/(m3·d)。厌氧与好氧过程的根本区别,是不以分子态氧作为受氢体,而以化合态的氧、碳、硫、氢等作为受氢体。
(作者: 来源:)