步进电机的特点
步进电机的工作状态不易受各种干扰因素(如电源电压的波动、电流的大小与波形的变化、温度等)的影响,只要在它们的大小未引起步进电机产生“丢步”现象之前,就不影响其正常工作;
步进电机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差为“零”,不会长期积累。
控制性能好。
回顾日本,工业化中后期是
步进电机
步进电机的特点
步进电机的工作状态不易受各种干扰因素(如电源电压的波动、电流的大小与波形的变化、温度等)的影响,只要在它们的大小未引起步进电机产生“丢步”现象之前,就不影响其正常工作;
步进电机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差为“零”,不会长期积累。
控制性能好。
回顾日本,工业化中后期是工业机器人需求爆发黄金节点。日本在上世纪七十年代人均GDP超2000美元,进入工业化后阶段,与此相对应工业机器人保有量迅猛增长。1985年,工业机器人保有数量达9.30万台,十年增长92倍、制造业人均保有量为7.53台/千人,超1974年的90倍。宏观角度,经济结构向第三产业转型;资本、技术密集型中制造业不断成长以支撑“出口导向型”发展模式;与GDP高增速相背离的劳动力人口增速逐步下滑。此背景下必须依托技术提升全要素生产率拉动经济增长。两相步进电机和驱动器,在自动化机电传动中广泛使用,步进电机和驱动器几项重要参数了解,有助在设备配套选择应用。微观产业角度:供给端,产业链上下游产学研相结合有效降低工业机器人产品成本、提升可靠性,其产业化应用被视为生产力革命新手段;需求端,汽车产业爆发增长释放直接需求红利,而众多积极政策的引导梳理,亦激发下游中小企业智能化生产线改造需求。

常见的步进电机:
4相单极性步进电机(有5线或6线取决于两个COM线是否接在一起)
2相双极性步进电机
步进电机驱动器的细分大小与电机的力矩没有很明确的关系
细分大电机的运行会更平稳,减小低频共振和噪音。
真正影响电机力矩的是工作电流,电机的运行电流是在一定范围内的,电流越大,电机力矩越大,电流越小,力矩越小。所以在运行的时候,电机转速的大小会产生不同大小的反向电动势,也就是说电机转速越大,反向电流也越大,真正的工作电流就会减小的越多,力矩也会相应减小。要提高电机转速,同时保持较大有效扭矩,则需提高电机的运行功率来提高扭矩,而开环驱动器是以电流恒定控制,这样,需提高运行功率,则只有加大驱动电压来达到电机运行时功率,从而使电机提高相应转速,保持扭矩。
总结:工作电流越大,力矩越大。
转速越快,工作电流会减小越快,力矩也会减小越快。
建议步进电机转速在800r/min以内,大于这个转速就要考虑用伺服电机了。

为了克服步进失步和过冲现象,应该在启动停止时加入适当的加减速控制。我们一般采用:运动控制卡作上位控制单元、具有控制功能的PLC作上位控制单元、单片机作上位控制单元来控制运动加减速可以克服失步过冲现象。
步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。大部分PLC还有分段控制的脉冲频率功能,即,把速度分为三段分别设置加速段,匀速段,减速段,这样加减速可以不对称,满足一些需要快启动慢停止,或者慢启动快停止的设备要求。
(作者: 来源:)