因此,当9-26风机产生振动故障现象时,首先必须从基础查找原因。基础因素主要是:
(1)混凝土基座结构设计有缺陷,基座强度和刚度不够;
(2)基础地质差,风机运行一段时间后,造成基础沉降或松动;
(3)混凝土基座材料不合格,浇筑不符合规范要求;
(4)地脚螺栓及垫铁的安装不当。实际中,常采用二次灌浆的方法将地脚螺栓进行固定定位,其施工
9-26风机
因此,当9-26风机产生振动故障现象时,首先必须从基础查找原因。基础因素主要是:
(1)混凝土基座结构设计有缺陷,基座强度和刚度不够;
(2)基础地质差,风机运行一段时间后,造成基础沉降或松动;
(3)混凝土基座材料不合格,浇筑不符合规范要求;
(4)地脚螺栓及垫铁的安装不当。实际中,常采用二次灌浆的方法将地脚螺栓进行固定定位,其施工、安装应严格执行规范要求,以确保质量。根据上述分析,基础因素引起风机振动的表征主要有:基础周围地坪有明显振动;本试验风机的结构简图,在风机蜗板和前后盖板上可分别固定穿孔钢板,穿孔板与蜗壳本体之间形成10mm的空腔,空腔内填充超细玻璃棉,形成消声蜗壳。基础与地坪或二次灌浆产生的结合面存在明显裂缝,垫铁或地脚螺栓松动,应注意,此类振动往往比较剧烈,严重时发生螺栓断裂,轴承座螺栓孔崩裂,直接造成轴承座报废;基础产生不均匀沉降,产生基座倾斜。9-26风机处理措施:一是验算基础的质量是否符合要求,对于风机等旋转式设备,由于回转而产生的惯性力作用在基础上,为确保安全运行,则基础质量应等于10 倍的风机机组质量,不符合要求应采用加固加重措施;二是有松动的二次灌浆地脚螺栓应破除拔出,孔壁凿毛后重新浇筑混凝土固定地脚螺栓。二次灌浆应保湿养护7 天以上,混凝土强度达到设计强度后才能进行下一步的安装。二次灌浆的混凝土强度可提高一级,固定效果更佳。
9-26风机与4 种消声方式风机的A 声级对比。从图中可以看出,每一种方式都有着不错的降噪效果,其中C 型改进风机降噪效果好,在额定工况点附近总A声级能降低约7 dB( A) ; B 型改进风机降噪效果也比较理想,优于A 和D 型改进风机; A 型改进风机的消声效果差。出现上述情况的原因应该是电机噪声通过蜗壳会被放大,而没有被吸声材料有效吸收。内藏电动机的长度、头部倾角等在一定程度上影响着风机性能和噪音。但后盖板加装消声材料,恰好吸收了电机的部分噪声,因此后盖板加装吸声材料降低风机噪声明显。
本文对吸声蜗壳对风机降噪效果进行了研究,分别对单独蜗板、后盖板、蜗板与后盖板、蜗板与前盖板加装消声材料的4 种方式进行了试验测量,在9-26风机全工况范围内,风机噪声都有不同程度的降低,其中蜗板加后盖板组合的降噪效果好。由于穿孔板摩擦损失较大,气体流动阻力增加,导致风机压力和效率都有不同程度的降低。通过试验证明相对于周向蜗板加装消声材料,风机后盖板加装消声材料消声效果明显,且结构简单、制造方便风机压力损失小。也证明了消声蜗壳有很好的降噪效果,并且9-26风机蜗壳尺寸虽然有一定的增大,但相对于消声器等其他降噪方法优势还是很明显的。首先,使两联轴器轴线平行,即先保证轴向百分表的四个读数相差值符合本文表1的允许值。对风机进出口安装条件有限制并且对噪声有一定要求的离心风机,吸声蜗壳是较好的选择。
将建立好的9-26风机三维模型导入ICEM 软件进行混合网格的划分。其中进出口和叶轮区域采用结构化网格,而蜗壳部分由于其内部结构复杂,尤其是电动机周围结构并非规则模型,故采用适应性较强的非结构化四面体网格,具体网格如图3 所示。综合考虑动静耦合区域对数值模拟预测结果的影响,在进行网格划分时,对边界层进行加密处理,其较低网格质量雅克比[14]在0.3 以上。为了保证数值计算结果的准确性,避免网格误差对其模拟结果造成影响,对9-26风机进行网格无关性验证,如表1 所示。综合考虑计算精度和计算效率可知,当网格数为25 万左右时预测结果较为合理,终确定整个计算域的网格数为2513558。消声蜗壳为A组合形式时与原风机的出口A声级随流量变化的对比图。k-ε 模型作为为普遍有效的湍流模型,能够计算大量的各种回流和薄剪切层流动,被广泛应用于各类风机的数值求解计算中。
由于有梯度扩散项,模型k-ε 方程为椭圆形方程,故其特性同其他椭圆形方程,需要边界条件:9-26风机出口或对称轴处k / n0和/ n0。但上述边界条件只针对高雷诺数而言,在固体壁面附近,流体粘性应力将取代湍流雷诺应力,并在临近固体壁面的粘性底层占主要作用。而多翼离心风机由于结构尺寸小、相对马赫数低,气体黏性力在流体流动过程中起重要作用,因此,在实际运用过程中,标准k-ε 模型由于未充分考虑粘性力的影响,导致计算模型出现偏差。运用Visual C++将上述修正函数编写为UDF代码,并导入Fluent 内置Calculation module。为符合实际运行状态,9-26风机进出口边界条件设置为压力入口和压力出口,出口压降与动能成正比,从而避免在进口和出口定义一致的速度分布[15]。加米字形集流器和普通圆弧形集流器内部流场受压分布所示,9-26风机米字形集流器入口压力为-8000Pa,到集流器出口达到-18000Pa,压差10000Pa。后以CFD 计算的定常结果作为初始条件,进行非定常数值计算。
(作者: 来源:)